

$\left.\begin{array}{|llll|}\hline \text { (i) } & \text { M1 } & \begin{array}{l}\text { For using I }=\Delta(\mathrm{mv}) \text { in the } \\ \text { direction of the original } \\ \text { motion (or equivalent from } \\ \text { use of relevant vector }\end{array} \\ \text { diagram). }\end{array}\right\}$

\begin{tabular}{|c|c|c|c|c|}
\hline 3 (i) \& \begin{tabular}{l}
\[
1.4 \mathrm{R}=0.35 \times 360+1.05 \times 200
\] \\
Magnitude is 240 N
\[
0.7 \times 240=0.35 \times 200+1.05 \mathrm{~T}
\]
\[
\text { Tension is } 93.3 \mathrm{~N}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 6 \& \begin{tabular}{l}
For taking moments about C for the whole structure. \\
AG \\
For taking moments about \(A\) for the \(\operatorname{rod} A B\).
\end{tabular} \\
\hline \[
\begin{aligned}
\& \mathrm{OR} \\
\& \text { (i) }
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.7 \mathrm{R}_{\mathrm{B}}=70+1.05 \mathrm{~T} \text { and } \\
\& 1.05 \mathrm{~T}
\end{aligned} \quad 0.7 \mathrm{R}_{\mathrm{C}}=126+
\] \& M1
A1 \& \& For taking moments about \(A\) for \(A B\) and \(A C\). \\
\hline \& \[
\begin{aligned}
\& 0.7\left(560-\mathrm{R}_{\mathrm{B}}\right)-0.7 \mathrm{R}_{\mathrm{B}}=126- \\
\& 70 \text { or } \\
\& \text { 2.1T } \quad 0.7 \times 560=70+126+ \\
\& \text { Magnitude is } 240 \mathrm{~N} \\
\& \text { Tension is } 93.3 \mathrm{~N}
\end{aligned}
\] \& M1

A1 \& 6 \& | For eliminating T or for adding the equations, and then using $R_{B}+R_{C}=560$. |
| :--- |
| For a correct equation in R_{B} only or T only |
| AG | \\

\hline (ii) \& | Horizontal component is 93.3 N to the left $Y=240-200$ |
| :--- |
| Vertical component is 40 N downwards | \& B1ft

M1
A1 \& 3 \& For resolving forces vertically. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& \begin{tabular}{l}
\(L(m) \ddot{\theta}=-(m) g \sin \theta\) or \((m) \ddot{s}=-\) \\
(m) \(g \sin (s / L)\) \(\ddot{\theta} \approx-\mathrm{k} \theta\) or \(\ddot{s}=-\mathrm{ks}\) [and motion is therefore approx. simple harmonic] \\
Period is 3.14 s .
\end{tabular} \& M1
A1
B1
M1
M1 \& 5 \& \begin{tabular}{l}
For using Newton's \(2^{\text {nd }}\) Law perp. to string with \(a=L \ddot{\theta}\). \\
For using \(\mathrm{T}=2 \pi / \mathrm{n}\) and \(\mathrm{k}=\) \(\mathrm{w}^{2}\) or \(\mathrm{T}=2 \pi \sqrt{L / g}\) for simple pendulum. AG
\end{tabular} \\
\hline (ii) \& \[
\begin{aligned}
\& \dot{\theta}^{2}=4\left(0.1^{2}-0.06^{2}\right) \text { or } \\
\& 1 / 2 \mathrm{~m}(2.45 \dot{\theta})^{2}= \\
\& \quad 2.45 \mathrm{mg}(\cos 0.06- \\
\& \cos 0.1) \\
\& \text { Angular speed is } 0.16 \mathrm{rad} \mathrm{~s}^{-1} .
\end{aligned}
\] \& M1
A1

A1 \& 3 \& | For using $\dot{\theta}^{2}=n^{2}\left(\theta_{0}{ }^{2}-\theta^{2}\right)$ or the principle of conservation of energy |
| :--- |
| (0.1599... from energy method) | \\

\hline | OR |
| :--- |
| (ii) | \& | (in the case for which (iii) is attempted before (ii)) $\begin{aligned} & {[\dot{\theta}=-0.2 \sin 2 t]} \\ & \dot{\theta}=-0.2 \sin (2 \times 0.464) \end{aligned}$ |
| :--- |
| Angular speed is $0.16 \mathrm{rad} \mathrm{s}^{-1}$. | \& | M1 |
| :--- |
| A1ft |
| A1 | \& 3 \& For using $\dot{\theta}=\mathrm{d}(\mathrm{Acos} \mathrm{nt}) / \mathrm{dt}$ \\

\hline (iii) \& | $0.06=0.1 \cos 2 \mathrm{t}$ or $0.1 \sin (\pi / 2-$ |
| :--- |
| 2t) |
| or $\quad 2 \mathrm{~T}=\pi / 2-$ |
| $\sin ^{-1} 0.6$ |
| Time taken is 0.464 s | \& M1

A1ft
A1 \& 3 \& For using $\theta=$ Acos nt or $\operatorname{Asin}(\pi / 2-n t)$ or for using $\theta=$ Asin nt and $\mathrm{T}=\mathrm{t}_{0.1}-\mathrm{t}_{0.06}$ ft angular displacement of 0.04 instead of 0.06 \\
\hline
\end{tabular}

5	$2 \times 12 \cos 60^{\circ}-3 \times 8=2 a+3 b$ For LHS of equation below $0.5\left(12 \cos 60^{\circ}+8\right)=b-a$ Speed of B is $0.4 \mathrm{~ms}^{-1}$ in \mathbf{i} direction $a=-6.6$ Component of A's velocity in \mathbf{j} direction is $12 \sin 60^{\circ}$ Speed of A is $12.3 \mathrm{~ms}^{-1}$ Direction is at 122.4° to the \mathbf{i} direction	M1 A1 M1 A1 A1 M1 A1 A1 B1 B1ft M1 A1ft		$\Sigma \mathrm{mv}$ conserved in i direction. For using NEL Complete equation with signs of a and b consistent with previous equation. For eliminating a or b . May be shown on diagram or implied in subsequent work. For using $\theta=\tan ^{-1}$ (jcomp/ $\pm \mathbf{i}$ comp) Accept $\theta=57.6^{\circ}$ with θ correctly identified.
6 (i)	$\begin{aligned} & \mathrm{T}=1470 \times / 30 \\ & {[49 \mathrm{x}=70 \times 9.8]} \\ & \mathrm{x}=14 \end{aligned}$ Distance fallen is 44 m	B1 M1 A1 A1ft	4	For using $\mathrm{T}=\mathrm{mg}$
(ii)	PE loss $=70 \mathrm{~g}(30+14)$ EE gain $=1470 \times 14^{2} /(2 \times 30)$ $\left[1 / 270 v^{2}=30184-4802\right]$ Speed is $26.9 \mathrm{~ms}^{-1}$	B1ft B1ft M1 A1	4	For a linear equation with terms representing KE, PE and EE changes. AG
OR (ii)	$\left[0.5 v^{2}=14 g-68.6+30 g\right]$ For $14 \mathrm{~g}+30 \mathrm{~g}$ For ∓ 68.6 Speed is $26.9 \mathrm{~ms}^{-1}$	M1 B1ft B1ft A1	4	For using Newton's $2^{\text {nd }}$ law ($\mathrm{vdv} / \mathrm{dx}=\mathrm{g}-0.7 \mathrm{x}$), integrating $\left(0.5 \mathrm{v}^{2}=\mathrm{gx}-\right.$ $\left.0.35 x^{2}+k\right)$, using $v(0)^{2}=$ $60 \mathrm{~g} \rightarrow \mathrm{k}=30 \mathrm{~g}$, and substituting $x=14$. Accept in unsimplified form. AG
(iii)	$\begin{aligned} & \text { PE loss }=70 \mathrm{~g}(30+\mathrm{x}) \\ & \text { EE gain }=1470 x^{2} /(2 \times 30) \\ & {\left[\mathrm{x}^{2}-28 \mathrm{x}-840=0\right]} \end{aligned}$ Extension is 46.2 m	B1ft B1ft M1 A1	4	For using PE loss $=\mathrm{KE}$ gain to obtain a 3 term quadratic equation.
OR (iii)	$A=26.9 / \sqrt{0.7}$ Extension is 46.2 m	M1 M1 A1 A1	4	For identifying SHM with $\begin{aligned} & \quad n^{2}= \\ & 1470 /(70 \times 30) \\ & \text { For using } v_{\text {max }}=A n \end{aligned}$

\begin{tabular}{|c|c|c|c|c|}
\hline 7 (i) \& \[
\begin{aligned}
\& 1 / 20.3 \mathrm{v}^{2}+1 / 20.4 \mathrm{v}^{2} \\
\& \pm 0.3 \mathrm{~g}(0.6 \sin \theta) \\
\& \pm 0.4 \mathrm{~g}(0.6 \theta) \\
\& {\left[0.35 \mathrm{v}^{2}=2.352 \theta-1.764 \sin \theta\right]} \\
\& \mathrm{v}^{2}=6.72 \theta-5.04 \sin \theta
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 5 \& For using the principle of conservation of energy. AG \\
\hline \multirow[t]{3}{*}{(ii)} \& \& M1 \& \& For applying Newton's \(2^{\text {nd }}\) Law radially to P and using \(\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}\) \\
\hline \& \[
\begin{aligned}
\& 0.3\left(\mathrm{v}^{2} / 0.6\right)=0.3 \mathrm{~g} \sin \theta-\mathrm{R} \\
\& {[1 / 2(6.72 \theta-5.04 \sin \theta)=}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { A1 } \\
\& \text { M1 }
\end{aligned}
\] \& \& For substituting for \(\mathrm{v}^{2}\). \\
\hline \& \[
\begin{aligned}
\& 0.3 \mathrm{~g} \sin \theta-\mathrm{R}] \\
\& \text { Magnitude is }(5.46 \sin \theta- \\
\& 3.36 \theta) \mathrm{N} \\
\& {[5.46 \cos \theta-3.36=0]} \\
\& \text { Value of } \theta \text { is } 0.908
\end{aligned}
\] \& A1
M1
A1 \& 6 \& \begin{tabular}{l}
AG \\
For using \(\mathrm{dR} / \mathrm{d} \theta=0\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{(iii)} \& \[
\begin{aligned}
\& {[\mathrm{T}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a}]} \\
\& {[0.4 \mathrm{~g}-\mathrm{T}=0.4 \mathrm{a}]}
\end{aligned}
\] \& M1
M1 \& \& \begin{tabular}{l}
For applying Newton's \(2^{\text {nd }}\) Law tangentially to \(P\) \\
For applying Newton's \(2^{\text {nd }}\) Law to Q \\
[If \(0.4 \mathrm{~g}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a}\) is seen, assume this derives from
\[
\mathrm{T}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a} \ldots \ldots .
\] \\
M1 \\
and \(\mathrm{T}=0.4 \mathrm{~g} \ldots . . . \mathrm{M} 0]\)
\end{tabular} \\
\hline \& Component is \(5.6-4.2 \cos \theta\) \& A1 \& 3 \& \\
\hline \begin{tabular}{l}
OR \\
(iii)
\end{tabular} \& \(0.4 \mathrm{~g}-0.3 \mathrm{~g} \cos \theta=(0.3+0.4) \mathrm{a}\) Component is \(5.6-4.2 \cos \theta\) \& \[
\begin{aligned}
\& \mathrm{B} 2 \\
\& \mathrm{~B} 1 \\
\& \hline
\end{aligned}
\] \& 3 \& \\
\hline \begin{tabular}{l}
OR \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& {[2 \mathrm{v}(\mathrm{dv} / \mathrm{d} \theta)=6.72-5.04 \cos \theta]} \\
\& 2(0.6 \mathrm{a})=6.72-5.04 \cos \theta \\
\& \text { Component is } 5.6-4.2 \cos \theta
\end{aligned}
\] \& M1

M1

A1 \& 3 \& | For differentiating v^{2} (from |
| :--- |
| (i)) w.r.t. θ |
| For using $\mathrm{v}(\mathrm{dv} / \mathrm{d} \theta)=\mathrm{ar}$ | \\

\hline
\end{tabular}

ALTERNATIVELY

2
$(\mathrm{I} / \mathrm{m})^{2}=28^{2}+10^{2}-2 \times 28 \times 10 \cos 60^{\circ}[=604] \quad \mathrm{A} 1$
$[\mathrm{I}=0.057 \sqrt{604}] \quad$ M1
$\mathrm{I}=1.40$
M1 For using cosine rule in correct triangle
1
A1
M1 For using sine rule in correct triangle
$(\mathrm{I} / \mathrm{m}) / \sin 60^{\circ}=$ A1
$10 / \sin \left(\theta-30^{\circ}\right)$ or $28 / \sin \left(150^{\circ}-\right.$
θ)
$\theta=50.6 \quad$ A1 7

6	$\begin{aligned} & \text { (i) } \quad\left[u \sin 30^{\circ}=3\right] \\ & u=6 \end{aligned}$	M1 A1	2	For momentum equation for B, normal to line of centres
	(ii) $\left[4 \sin 88.1^{\circ}=\mathrm{v} \sin 45^{\circ}\right]$	M1		For momentum equation for A, normal to line of centres
	$\mathrm{v}=5.65$	A1		
		M1		For momentum equation along line of centres
	$\begin{aligned} & 0.4\left(4 \cos 88.1^{\circ}\right)-m u \cos 30^{\circ}=-0.4 v \cos 45^{\circ} \\ & m=0.318 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	5	
	(iii)	M1		For using NEL
	$0.75\left(4 \cos \theta+\mathrm{u} \cos 30^{\circ}\right)=\mathrm{v} \cos 45^{\circ}$	A1		
	$4 \sin \theta=\mathrm{v} \sin 45^{\circ}$	B1		
	$\left[3 \cos \theta+4.5 \cos 30^{\circ}=4 \sin \theta\right]$	M1		For eliminating v
	$8 \sin \theta-6 \cos \theta=9 \cos 30^{\circ}$	A1	5	AG
7	(i)(a) Extension $=1.2 \alpha-0.6$	B1		
	$[\mathrm{T}=\operatorname{mg} \sin \alpha]$	M1		For resolving forces tangentially
	$0.5 x 9.8 \sin \alpha=6.86(1.2 \alpha-0.6) / 0 . / 6$ $\sin \alpha=2.8 \alpha-1.4$	$\mathrm{A} 1 \mathrm{ft}$ A1	4	AG
		A1	4	
	$\begin{aligned} & \text { (i)(b) } \quad[0.8,0.756 . ., 0.745 . ., 0.742 . ., \\ & 0.741 . ., 0.741 . ., \quad] \end{aligned}$	M1		For attempting to find α_{2} and α_{3}
	$\alpha=0.74$	A1	2	
	(ii) $\Delta \mathrm{h}=1.2(\cos 0.5-\cos 0.8)$ $[0.217 \ldots]$	B1		
	[0.5x9.8x0.217.. $=1.06355 .$.	M1		For using $\Delta(\mathrm{PE})=\mathrm{mg} \Delta \mathrm{h}$
	$\left[6.86(1.2 x 0.8-0.6)^{2} /(2 x 0.6)=0.74088\right]$	M1		For using $\mathrm{EE}=\lambda \mathrm{x}^{2} / 2 \mathrm{~L}$
		M1		For using the principle of conservation of energy
	$1 / 20.5 \mathrm{v}^{2}=1.06355 . .-0.74088$	A1		Any correct equation for v^{2}
	Speed is $1.14 \mathrm{~ms}^{-1}$	A1		
	Speed is decreasing	B1ft	7	

2	ALTERNATIVE METHOD		
		M1	For using I= Δ mv parallel to the initial direction of motion or parallel to the impulse
	$-0.6 \cos \alpha=0.057 \times 7 \cos \beta-0.057 \times 10$	A1	
	or $0.6=0.057 \times 10 \cos \alpha+0.057 \times 7 \cos \gamma$		
		M1	For using I= Δ mv perpendicular to the initial direction of motion or perpendicular to the impulse
	$0.6 \sin \alpha=0.057 \times 7 \sin \beta$	A1	
	or $0.057 \mathrm{x} 10 \sin \alpha=0.057 \mathrm{x} 7 \sin \gamma$		
		M1	For eliminating $\beta *$ or γ
	$\begin{aligned} & 0.399^{2}=(0.57-0.6 \cos \alpha)^{2}+(0.6 \sin \alpha)^{2} \\ & \text { or } 0.399^{2}=(0.6-0.57 \cos \alpha)^{2}+(0.057 \sin \alpha)^{2} \end{aligned}$	A1ft	
	Angle is 140°	A1	$(180-39.8)^{\circ}$

ALTERNATIVE METHOD FOR PART (iii)

$\left[\int \frac{1}{v^{2}} d v=-2 \int d t \rightarrow-1 / \mathrm{v}=-2 \mathrm{t}+\mathrm{A}\right.$, and
A $=-1 / \mathrm{u}]$
$-\mathrm{e}^{2 \mathrm{x}} \mathrm{u} / \mathrm{u}=-2 \mathrm{t}-1 / \mathrm{u}$
$\mathrm{u}=6.70$

$u=6.70$

M1 \quad For using $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$, separating variables, attempting to integrate and using $\mathrm{v}(0)=\mathrm{u}$
M1 \quad For substituting $v=u e^{-2 x}$
A1
A1 4 Accept $\left(\mathrm{e}^{4}-1\right) / 8$

| 4 | $\mathrm{y}=15 \sin \alpha$
 $[4(15 \cos \alpha)-3 \times 12=4 \mathrm{a}+3 \mathrm{~b}]$ | B1
 M1 |
| :--- | :--- | :--- | | For using principle of |
| :--- |
| conservation of momentum in the |
| direction of l.o.c. |

5	(i)	M1	For taking moments of forces on BC about B
	$80 \times 0.7 \cos 60^{\circ}=1.4 \mathrm{~T}$	A1	For resolving forces horizontally $\mathrm{ft} \mathrm{X}=\mathrm{T} \cos 30^{\circ}$ For resolving forces vertically $\mathrm{ft} \mathrm{Y}=80-\mathrm{T} \sin 30^{\circ}$
	Tension is 20 N	A1	
	[$\mathrm{X}=20 \cos 30^{\circ}$]	M1	
	Horizontal component is 17.3 N	A1ft	
	[$\mathrm{Y}=80-20 \sin 30^{\circ}$]	M1	
	Vertical component is 70N	A1ft	
	(ii)	M1	For taking moments of forces on $A B$, or on $A B C$, about A
	$17.3 \times 1.4 \sin \alpha=(80 \times 0.7+70 \times 1.4) \cos \alpha$ or	A1ft	
	$80 \times 0.7 \cos \alpha+80\left(1.4 \cos \alpha+0.7 \cos 60^{\circ}\right)=$		
	$20 \cos 60^{\circ}\left(1.4 \cos \alpha+1.4 \cos 60^{\circ}\right)+$		
	$20 \sin 60^{\circ}\left(1.4 \sin \alpha+14 \sin 60^{\circ}\right)$		
	$[\tan \alpha=(1 / 280+70) / 17.3=11 / \sqrt{3}]$	M1	For obtaining a numerical
	$\alpha=81.1^{\circ}$	A1	expression for $\tan \alpha$

ALTERNATIVE METHOD FOR PART (i)		
$\mathrm{Hx} 1.4 \sin 60^{\circ}+\mathrm{Vx} 1.4 \cos 60^{\circ}=80 \mathrm{x} 0.7 \cos 60^{\circ}$	M1	For taking moments of forces on BC about B
	A1	Where H and V are components of T
	M1	For using $\mathrm{H}=\mathrm{V} \sqrt{3}$ and solving simultaneous equations
Tension is 20N	A1	
Horizontal component is 17.3 N	B1ft	ft value of H used to find T
[$\mathrm{Y}=80-\mathrm{V}$]	M1	For resolving forces vertically
Vertical component is 70N	A1ft	ft value of V used to find T

FIRST ALTERNATIVE METHOD FOR
PART (ii)
[160g - 2058x/5.25 = 160v dv/dx] M1 For using Newton's second law with a = v dv/dx, separating the variables and attempting to integrate
$v^{2} / 2=g x-1.225 x^{2}(+C)$
A1 Any correct form
M1 For using $v(2)=3.5$
$C=-8.575$
A1
$\left[\mathrm{v}(7)^{2}\right] / 2=68.6-60.025-8.575=0 \rightarrow \mathrm{P} \mathrm{\& Q}$ just
A1 5 AG
reach the net

SECOND ALTERNATIVE METHOD FOR PART

(ii)

$\ddot{x}=g-2.45 x \quad(=-2.45(x-4))$	B1		
	M1		For using $n^{2}=2.45$ and $v^{2}=n^{2}\left(A^{2}-(x-4)^{2}\right)$
$3.5^{2}=2.45\left(\mathrm{~A}^{2}-(-2)^{2}\right) \quad(\mathrm{A}=3)$	A1		
$[(4-2)+3]$	M1		For using ‘distance travelled downwards by P and $\mathrm{Q}=$ distance to new equilibrium position + A
distance travelled downwards by P and $\mathrm{Q}=5 \rightarrow \mathrm{P} \& \mathrm{Q}$ just reach the net	A1	5	AG

4730 Mechanics 3

1	(i) $\left[0.5\left(\mathrm{v}_{\mathrm{x}}-5\right)=-3.5,0.5\left(\mathrm{v}_{\mathrm{y}}-0\right)=2.4\right]$ Component of velocity in x -direction is $-2 \mathrm{~ms}^{-1}$ Component of velocity in y-direction is $4.8 \mathrm{~ms}^{-1}$ Speed is $5.2 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		For using $\mathrm{I}=\mathrm{m}(\mathrm{v}-\mathrm{u})$ in x or y direction AG
SR For candidates who obtain the speed without finding the required components of velocity (max 2/4)				
	Components of momentum after impact are -1 and 2.4 Ns Hence magnitude of momentum is 2.6 Ns and required speed is $2.6 / 0.5=5.2 \mathrm{~ms}^{-1}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		
	(ii)	M1		For using $\mathrm{I}_{\mathrm{y}}=\mathrm{m}\left(0-\mathrm{v}_{\mathrm{y}}\right)$ or $\mathrm{I}_{\mathrm{y}}=-\mathrm{y}$-component of $1^{\text {st }}$ impulse
	Component is -2.4 Ns	A1	2	

2	(i) $\begin{aligned} & 50 \times 1 \sin \beta=75 \times 2 \cos \beta \\ & \tan \beta=3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	For 2 term equation, each term representing a relevant moment AG
	(ii) Horizontal force is 75 N Vertical force is 50 N	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	
	(iii) For not more than one error in $\begin{aligned} & \mathrm{Wx} 1 \sin \alpha+50(2 \sin \alpha+1 \sin \beta)= \\ & \quad 75(2 \cos \alpha+2 \cos \beta) \text { or } \mathrm{Wx} 1 \sin \alpha+ \\ & 50 \times 2 \sin \alpha=75 \times 2 \cos \alpha \\ & 0.6 \mathrm{~W}+107.4 \ldots=167.4 \ldots \text { or } 0.6 \mathrm{~W}+60=120 \\ & \mathrm{~W}=100 \end{aligned}$	M1 A1 A1 A1	4	For taking moments about A for the whole or for AB only Where $\tan \alpha=0.75$

4	$\begin{aligned} & \text { (i) } \quad[\mathrm{mg}-0.49 \mathrm{mv}=\mathrm{ma}] \\ & m v \frac{d v}{d x}=m g-0.49 m v \\ & {\left[\frac{v(d v / d x)}{g-0.49 v}=1\right]} \\ & {\left[\frac{v}{9.8-0.49 v} \equiv \frac{-1}{0.49}\left(\frac{(9.8-0.49 v)-9.8}{9.8-0.49 v}\right)\right]} \\ & \left(\frac{20}{20-v}-1\right) \frac{d v}{d x}=0.49 \end{aligned}$	M1 A1 M1 M1 A1	5	For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG
	(ii) $\begin{aligned} & \int \frac{20}{20-v} d v=-20 \ln (20-v) \\ & -20 \ln (20-v)-\mathrm{v}=0.49 \mathrm{x} \quad+\mathrm{C}) \\ & {[-20 \ln 20=\mathrm{C}]} \\ & \mathrm{x}=40.8(\ln 20-\ln (20-\mathrm{v}))-2.04 \mathrm{v} \end{aligned}$	M1 B1 A1ft M1 A1	5	For separating the variables and integrating For using $\mathrm{v}=0$ when $\mathrm{x}=0$ Accept any correct form

	6 (i) Sp T 	(i) $\quad\left[1 / 2 \mathrm{~m}^{2}=1 / 2 \mathrm{mv}^{2}+2 \mathrm{mg}\right]$ Speed is $3.13 \mathrm{~ms}^{-1}$ $\left[\mathrm{T}=\mathrm{mv}^{2} / \mathrm{r}\right]$ Tension is 1.96 N	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$	4	For using the principle of conservation of energy For using Newton's second law horizontally and $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$
	(ii $1 / 2 \mathrm{I}$ $[-2$ $6 \mathrm{~g}$ θ	$\begin{aligned} & \text { (ii) } \quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right] \\ & \mathrm{v}^{2}=-2 \mathrm{~g} \cos \theta \\ & 1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv} \\ & {[-2 \mathrm{~g} \cos \theta=49-4 \mathrm{mg}(2-2 \cos \theta)} \\ & 6 \mathrm{~g} \cos \theta=-9.8 \\ & \theta=99.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	8	For using Newton's second law radially For using $\mathrm{T}=0$ (may be implied) For using the principle of conservation of energy For eliminating v^{2} May be implied by answer
	Alternative (i)	$\begin{aligned} & \text { (ii) } \quad\left[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / \mathrm{r}\right] \\ & \text { ve for candidates who eliminate }{ }^{2} \text { before } \\ & 1 / 2 \mathrm{~m} 7^{2}=1 / 2 \mathrm{mv}^{2}+\mathrm{mg}(2-2 \cos \theta) \\ & {[\mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{m}(49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta) 2]} \\ & -2 \mathrm{~g} \cos \theta=49-4 \mathrm{~g}+4 \mathrm{~g} \cos \theta \\ & 6 \mathrm{~g} \cos \theta=-9.8 \\ & \theta=99.6 \end{aligned}$	M1 M1 A1 M1 M1 A1ft A1 A1	8	For using Newton's second law radially For using the principle of conservation of energy For eliminating v^{2} For using $\mathrm{T}=0$ (may be implied) ft error in energy equation May be implied by answer

7	$\begin{aligned} & \text { (i) } \quad \mathrm{T}=4 \mathrm{mg}(4+\mathrm{x}-3.2) / 3.2 \\ & {[\mathrm{ma}=\mathrm{mg}-4 \mathrm{mg}(0.8+\mathrm{x}) / 3.2]} \\ & 4 \ddot{\mathrm{x}}=-49 \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using Newton's second law AG
	(ii) Amplitude is 0.8 m Period is $2 \pi / \omega$ s where $\omega^{2}=49 / 4$ Slack at intervals of 1.8 s	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \\ & \mathrm{~A} 1 \end{aligned}$	4	(from $4+A=4.8$) String is instantaneously slack when shortest (4-A = $3.2=\mathrm{L}$). Thus required interval length = period. AG
	$\begin{aligned} & \quad[\mathrm{ma}=-\mathrm{mg} \sin \theta] \\ & \mathrm{mL} \ddot{\theta}=-\mathrm{mgsin} \theta \end{aligned}$ For using $\sin \theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$ $\text { .-(g/L) } \theta$	M1 A1 A1	3	For using Newton's second law tangentially AG
	$\begin{aligned} & \text { (iv) } \quad[\theta=0.08 \cos (3.5 x 0.25)](=0.05127 . .) \\ & {[\dot{\theta}=-3.5(0.08) \sin (3.5 \times 0.25)} \\ & \left.\dot{\theta}^{2}=12.25\left(0.08^{2}-0.05127 . .^{2}\right)\right] \\ & \dot{\theta}=\mp 0.215 \\ & {[\mathrm{v}=0.215 \times 9.8 / 12.25]} \end{aligned}$ $\text { Speed is } 0.172 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	5	For using $={ }_{o} \cos \omega$ t where $\omega^{2}=12.25$ (may be implied by $\dot{\vartheta}=-\omega \quad{ }_{0} \sin \omega \mathrm{t}$) For differentiating $={ }_{o} \cos \omega t$ and using $\dot{\vartheta}$ or for using $\dot{\theta}^{2}=\omega^{2}\left(\theta_{o}{ }^{2}-\theta^{2}\right)$ where $\omega^{2}=12.25$ May be implied by final answer For using $\mathrm{v}=\mathrm{L} \dot{\vartheta}$ and $\mathrm{L}=\mathrm{g} / \omega^{2}$

4730 Mechanics 3

1	$\begin{aligned} & \text { (i) } \quad \mathrm{T}=(1.35 \mathrm{mg})(3-1.8) \div 1.8 \\ & {[0.9 \mathrm{mg}=\mathrm{ma}]} \\ & \text { Acceleration is } 8.82 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using $\mathrm{T}=\mathrm{ma}$
	$\begin{aligned} & \text { (ii) } \quad \begin{array}{l} \text { Initial EE } \\ {[1.25 \mathrm{mg})(3-1.8)^{2} \div(2 \times 1.8)} \\ \text { Speed is } 3.25 \mathrm{~ms}^{-1} \end{array} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $1 / 2 \mathrm{mv}{ }^{2}=$ Initial EE

4 (i) [$\mathrm{mgsin} \alpha-0.2 \mathrm{mv}=\mathrm{ma}$] $\begin{aligned} & 5 \frac{d v}{d t}=28-v \\ & {\left[\int \frac{5}{28-v} d v=\int d t\right]} \end{aligned}$ (C) $-5 \ln (28-\mathrm{v})=\mathrm{t}$ $\begin{aligned} & \ln [(28-\mathrm{v}) / 28]=-\mathrm{t} / 5 \\ & {\left[28-\mathrm{v}=28 \mathrm{e}^{\mathrm{t} / 5}\right]} \\ & \mathrm{v}=28\left(1-\mathrm{e}^{-t / 5}\right) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$		For using Newton's second law AG For separating variables and integrating For using $\mathrm{v}=0$ when $\mathrm{t}=0$ ft for $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} / \mathrm{A}$ from $\mathrm{C}+\mathrm{A} \ln (28-\mathrm{v})=\mathrm{t}$ previously For expressing v in terms of t ft for $\mathrm{v}=28\left(1-\mathrm{e}^{\mathrm{t} / \mathrm{A}}\right)$ from $\ln [(28-\mathrm{v}) / 28]=\mathrm{t} / \mathrm{A}$ previously
(ii) $\left[\mathrm{a}=28 \mathrm{e}^{-2} / 5\right]$ Acceleration is $0.758 \mathrm{~ms}^{-2}$	M1 A1ft	2	For using $\mathrm{a}=(28-\mathrm{v}(\mathrm{t})) / 5$ or $\mathrm{a}=$ $\mathrm{d}\left(28-28 \mathrm{e}^{-t / 5}\right) \mathrm{dt}$ and substituting $\mathrm{t}=10$. ft from incorrect v in the form $\mathrm{a}+\mathrm{be}^{\mathrm{ct}}(\mathrm{b} \neq 0)$; Accept $5.6 / \mathrm{e}^{2}$

4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and (0.5)6.3 and angle θ correctly marked OR Changes of velocity in i and j directions $2.5 \cos \theta-6.3$ and $2.5 \sin \theta$, respectively. For sides $0.5 \times 2.5,0.5 \times 6.3$ and 2.6 (or 2.5, 6.3 and 5.2) OR $-2.6 \cos \alpha=0.5(2.5 \cos \theta-6.3)$ and $2.6 \sin \alpha=0.5(2.5 \sin \theta)$ $\left[5.2^{2}=2.5^{2}+6.3^{2}-2 \times 2.5 \times 6.3 \cos \theta \quad\right.$ OR $2.6^{2}=0.5^{2}\left\{(2.5 \cos \theta-6.3)^{2}+(2.5 \sin \theta)^{2}\right]$ $\cos \theta=0.6$	B1 B1ft M1 A1 [4]	May be implied in subsequent working. May be implied in subsequent working. For using cosine rule in triangle or eliminating α. AG
(ii)	$\sin \alpha=2.5 \mathrm{x} 0.8 / 5.2 \quad$ OR $-2.6 \cos \alpha=0.5(2.5 \times 0.6-6.3)$ Impulse makes angle of 157° or 2.75° with original direction of motion of P .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For appropriate use of the sine rule or substituting for θ in one of the above equations in θ and α For evaluating $(180-\alpha)^{0}$ or $(\pi-\alpha)^{c}$ SR (relating to previous 2 marks; max 1 mark out of 2) $\alpha=23^{\circ} \text { or } 0.395^{\mathrm{C}}$

2 (i)	$\begin{aligned} & {[70 \times 2=4 \mathrm{X}-4 \mathrm{Y}]} \\ & \mathrm{X}-\mathrm{Y}=35 \end{aligned}$	M1 A1 [2]	For taking moments about A for AB (3 terms needed)
(ii)	$\begin{aligned} & {[110 \times 3=-4 X+6 Y]} \\ & 2 X-3 Y+165=0 \end{aligned}$	M1 A1 [2]	For taking moments about C for BC (3 terms needed) AG
(iii)	$\mathrm{X}=270, \mathrm{Y}=235$ Magnitude is 358 N	M1 A1ft M1 A1ft [4]	For attempting to solve for X and Y ft any (X, Y) satisfying the equation given in (ii) For using magnitude $=\sqrt{X^{2}+Y^{2}}$ ft depends on all 4 Ms

3 (i)	$\begin{aligned} & {\left[\mathrm{T}_{\mathrm{A}}=(24 \times 0.45) / 0.6, \mathrm{~T}_{\mathrm{B}}=(24 \times 0.15) / 0.6\right]} \\ & \mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=18-6=12=\mathrm{W} \rightarrow \mathrm{P} \text { in equil'm. } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \end{aligned}$	For using $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA or PB
(ii)	Extensions are $0.45+\mathrm{x}$ and $0.15-\mathrm{x}$ Tensions are $18+40 \mathrm{x}$ and $6-40 \mathrm{x}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	AG From $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA and PB
(iii)	$\begin{aligned} & {[12+(6-40 \mathrm{x})-(18+40 \mathrm{x})=12 \ddot{x} / \mathrm{g}]} \\ & \ddot{x}=-80 \mathrm{gx} / 12 \rightarrow \text { SHM } \\ & \text { Period is } 0.777 \mathrm{~s} \end{aligned}$	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period $=2 \pi \sqrt{12 /(80 \mathrm{~g})}$
(iv)	$\begin{aligned} & {\left[\mathrm{v}_{\max }=0.15 \sqrt{80 \mathrm{~g} \mathrm{/12}}\right.} \\ & \quad \text { or } \mathrm{v}_{\text {max }}=2 \pi \times 0.15 / 0.777 \\ & \begin{aligned} & \text { or } 1 / 2(12 / \mathrm{g}) \mathrm{v}_{\text {mx }}^{2}+\mathrm{mg}(0.15) \\ &\left.+24\left\{0.45^{2}+0.15^{2}-0.6^{2}\right\} /(2 \mathrm{x} 0.6)=0\right] \end{aligned} \end{aligned}$ Speed is $1.21 \mathrm{~ms}^{-1}$	M1 A1 [2]	For using $\mathrm{v}_{\text {max }}=\mathrm{An}$ or $\mathrm{v}_{\text {max }}=2 \pi \mathrm{~A} / \mathrm{T}$ or conservation of energy (5 terms needed)

4 (i)	$\begin{aligned} & \text { Loss in } \mathrm{PE}=\mathrm{mg}(0.5 \sin \theta) \\ & {\left[1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{~m} 3^{2}=\mathrm{mg}(0.5 \sin \theta)\right]} \\ & \mathrm{v}^{2}=9+9.8 \sin \theta \end{aligned}$	B1 M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$\begin{aligned} & \mathrm{a}_{\mathrm{r}}=18+19.6 \sin \theta \\ & {\left[\mathrm{ma}_{\mathrm{t}}=\mathrm{mg} \cos \theta\right]} \\ & \mathrm{a}_{\mathrm{t}}=9.8 \cos \theta \end{aligned}$	B1 M1 A1 [3]	Using $\mathrm{a}_{\mathrm{r}}=\mathrm{v}^{2} / 0.5$ For using Newton's second law tangentially
(iii)	$\begin{aligned} & {\left[\mathrm{T}-\mathrm{mg} \sin \theta=\mathrm{ma}_{\mathrm{r}}\right]} \\ & \mathrm{T}-1.96 \sin \theta=0.2(18+19.6 \sin \theta) \\ & \mathrm{T}=3.6+5.88 \sin \theta \\ & \theta=3.8 \end{aligned}$	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial \mathbf{i} components of velocity for A and B are $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively. $\begin{aligned} & 3 \times 4+4 x 3=3 a+4 b \\ & 0.75(4-3)=b-a \\ & a=3 \end{aligned}$ Final \mathbf{j} component of velocity for A is $3 \mathrm{~ms}^{-1}$ Angle with l.o.c. is 45° or 135°	B1 M1 A1 M1 A1 M1 A1 B1 M1 A1ft [10]	May be implied. For using p.c.mmtm. parallel to l.o.c. For using NEL For attempting to find a Depends on all three M marks May be implied For using $\tan ^{-1}\left(v_{\mathbf{j}} / v_{\mathbf{i}}\right)$ for A ft incorrect value of a ($\neq 0$) only
			SR for consistent sin/cos mix (max 8/10) $3 \times 3+4 \times 4=3 a+4 b$ and $\mathrm{b}-\mathrm{a}=0.75(3-4)$ M1 M1 as scheme and A1 for both equ's $\mathrm{a}=4 \mathrm{M} 1$ as scheme A1 j component for A is $4 \mathrm{~ms}^{-1} \mathrm{~B} 1$ Angle $\tan ^{-1}(4 / 4)=45^{\circ}$ M1 as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10} \quad(=14)$ $\begin{aligned} & {[0.125 \mathrm{dv} / \mathrm{dt}=0.125 \mathrm{~g}-0.025 \mathrm{v}]} \\ & \int \frac{5 d v}{5 g-v}=\int d t \\ & -5 \ln (5 \mathrm{~g}-\mathrm{v})=\mathrm{t}(+\mathrm{A}) \\ & {[-5 \ln 35=\mathrm{A}]} \\ & \mathrm{t}=5 \ln \{35 /(49-\mathrm{v})\} \\ & \mathrm{v}=49-35 \mathrm{e}^{-0.2 \mathrm{t}} \end{aligned}$	B1 M1 M1 A1 M1 A1 M1 A1 [8]	For using Newton's second law with $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ (3 terms required) For separating variables and attempt to integrate For using $\mathrm{v}(0)=14$ For method of transposition AG
(ii)	$\mathrm{x}=49 \mathrm{t}+175 \mathrm{e}^{-0.2 \mathrm{t}}(+\mathrm{B})$ $\left[x(3)=\left(49 x 3+175 e^{-0.6}\right)-(0+175)\right]$ Distance is 68.0 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For integrating to find $\mathrm{x}(\mathrm{t})$ For using limits 0 to 3 or for using $x(0)=0$ and evaluating $x(3)$

7(i)	$\begin{aligned} & \text { Gain in } \mathrm{EE}=20 \mathrm{x}^{2} /(2 \mathrm{x} 2) \\ & \\ & \text { Loss in GPE }=0.8 \mathrm{~g}(2+\mathrm{x}) \\ & {\left[{ }^{1 / 2} 0.8 \mathrm{v}^{2}=(15.68+7.84 \mathrm{x})-5 \mathrm{x}^{2}\right]} \\ & \mathrm{v}^{2}=39.2+19.6 \mathrm{x}-12.5 \mathrm{x}^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Accept 0.8 gx if gain in KE is $1 / 20.8\left(v^{2}-19.6\right)$ For using the p.c.energy AG
(ii)	(a) Maximum extension is 2.72 m (b) $\begin{aligned} & {[19.6-25 x=0,} \\ & \left.v^{2}=46.8832-12.5(x-0.784)^{2}\right] \\ & x=0.784 \text { or } c=46.9 \end{aligned}$ $\left[\mathrm{v}_{\max }{ }^{2}=39.2+15.3664-7.6832\right]$ Maximum speed is $6.85 \mathrm{~ms}^{-1}$ (c) $\begin{aligned} & \pm(0.8 \mathrm{~g}-20 \mathrm{x} / 2)=0.8 \mathrm{a} \\ & \mathrm{or} 2 \mathrm{v} \text { dv/dx }=19.6-25 \mathrm{x} \\ & \mathrm{a}= \pm(9.8-12.5 \mathrm{x}) \\ & \quad \text { or } \ddot{\mathrm{y}}=-12.5 \mathrm{y} \text { where } \mathrm{y}=\mathrm{x}-0.784 \\ & {\left[\|a\|_{\max }=\|9.8-12.5 \mathrm{x} 2.72\|\right.} \\ & \text { or }\left\|\ddot{y}_{\max }\right\|=\mid-12.5(2.72-0.784 \mid] \end{aligned}$ Maximum magnitude is $24.2 \mathrm{~ms}^{-2}$	M1 A1 [2] M1 A1 M1 A1 [4] M1 A1 A1 M1 A1	For attempting to solve $\mathrm{v}^{2}=0$ For solving $20 \mathrm{x} / 2=0.8 \mathrm{~g}$ or for differentiating and attempting to solve $d\left(v^{2}\right) / d x=0$ or $d v / d x=0$ or for expressing v^{2} in the form $\mathrm{c}-\mathrm{a}(\mathrm{x}-\mathrm{b})^{2}$. For substituting $x=0.784$ in the expression for v^{2} or for evaluating \sqrt{c} For using Newton's second law (3 terms required) or $\mathrm{a}=\mathrm{vdv} / \mathrm{dx}$ $\mathrm{y}=\operatorname{ans}(\mathrm{ii})(\mathrm{a})-0.784$ into $\ddot{y}(\mathrm{y})$

4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is $4 \mathrm{~ms}^{-1}$ Vert. comp. of vel. after impact is $\sqrt{5^{2}-4^{2}}=3 \mathrm{~ms}^{-1}$ Coefficient of restitution is 0.5	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { [3] } \end{gathered}$	May be implied AG From e = 3/6
ii	Direction is vertically upwards Change of velocity is $3-(-6)$ Impulse has magnitude 2.7 Ns	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	From $m(\Delta v)=0.3 \times 9$
2 i	Horizontal component is 14 N $\begin{aligned} & 80 \times 1.5=14 \times 1.5+3 Y \quad \text { or } \\ & 3(80-Y)=80 \times 1.5+14 \times 1.5 \quad \text { or } \\ & 1.5(80-Y)=14 \times 0.75+14 \times 0.75+1.5 Y \end{aligned}$ $\text { Vertical component is } 33 \mathrm{~N} \text { upwards }$	B1 M1 A1 A1 [4]	For taking moments for $A B$ about A or B or the midpoint of $A B$ AG
ii	Horizontal component at C is 14 N [Vertical component at C is $\begin{aligned} & \left.(\pm) \sqrt{50^{2}-14^{2}}\right] \\ & {[W=(\pm) 48-33]} \end{aligned}$ Weight is 15 N	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	May be implied for using $R^{2}=H^{2}+V^{2}$ For resolving forces at C vertically
3 i	$\begin{aligned} & 4 \times 3 \cos 60^{\circ}-2 \times 3 \cos 60^{\circ}=2 b \\ & b=1.5 \\ & \mathbf{j} \text { component of vel. of } B=(-) 3 \sin 60^{\circ} \\ & {\left[v^{2}=b^{2}+\left(-3 \sin 60^{\circ}\right)^{2}\right]} \end{aligned}$ Speed $\left(3 \mathrm{~ms}^{-1}\right)$ is unchanged [Angle with l.o.c. $=\tan ^{-1}\left(3 \sin 60^{\circ} / 1.5\right)$] Angle is 60°.	M1 A1 A1 B1ft M1 A1ft M1 A1ft [8]	For using the p.c.mmtm parallel to l.o.c. ft consistent sin/cos mix For using $v^{2}=b^{2}+v_{y}{ }^{2}$ AG ft - allow same answer following consistent sin/cos mix. For using angle $=\tan ^{-1}\left(\pm v_{y} / v_{x}\right)$ ft consistent sin/cos mix
ii	$\left[e\left(3 \cos 60^{\circ}+3 \cos 60^{\circ}\right)=1.5\right]$ $\text { Coefficient is } 0.5$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ {[2]} \end{gathered}$	For using NEL ft - allow same answer following consistent sin/cos mix throughout.

4 i	$\begin{aligned} & F-0.25 v^{2}=120 v(\mathrm{~d} v / \mathrm{d} x) \\ & F=8000 / v \\ & {\left[32000-v^{3}=480 v^{2}(\mathrm{~d} v / \mathrm{d} x)\right]} \\ & \frac{480 v^{2}}{v^{3}-32000} \frac{\mathrm{~d} v}{\mathrm{~d} x}=-1 \end{aligned}$	M1 A1 B1 M1 A1 [5]	For using Newton's second law with $a=v(\mathrm{~d} v / \mathrm{d} x)$ For substituting for F and multiplying throughout by $4 v$ (or equivalent) AG
ii	$\begin{aligned} & \int \frac{480 v^{2}}{v^{3}-32000} \mathrm{~d} v=-\int \mathrm{d} x \\ & 160 \ln \left(v^{3}-32000\right)=-x \quad(+A) \\ & 160 \ln \left(v^{3}-32000\right)=-x+160 \ln 32000 \\ & \text { or } \\ & 160 \ln \left(v^{3}-32000\right)-160 \ln 32000=-500 \\ & \left(v^{3}-32000\right) / 32000=\mathrm{e}^{-x / 160} \\ & \text { Speed of } \mathrm{m} / \mathrm{c} \text { is } 32.2 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 M1 A1ft B1ft B1 [6]	For separating variables and integrating For using $v(0)=40$ or $\left[160 \ln \left(v^{3}-32000\right)\right]^{v}{ }_{40}=[-x]^{500}{ }_{0}$ ft where factor 160 is incorrect but +ve , Implied by $\left(v^{3}-32000\right) / 32000=\mathrm{e}^{-3.125}$ (or $=0.0439$..). ft where factor 160 is incorrect but +ve , or for an incorrect nonzero value of A
5 i	$\begin{aligned} & x_{\max }=\sqrt{1.5^{2}+2^{2}}-1.5(=1) \\ & {\left[T_{\max }=18 \times 1 / 1.5\right]} \\ & \text { Maximum tension is } 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For using $T=\lambda x / L$
ii	(a) Gain in $\mathrm{EE}=2\left[18\left(1^{2}-0.2^{2}\right)\right] /(2 \times 1.5)(11.52)$ Loss in GPE $=2.8 \mathrm{mg}$ (27.44m) $\begin{aligned} & {[2.8 m \times 9.8=11.52]} \\ & m=0.42 \end{aligned}$ (b) $1 / 2 m v^{2}=m g(0.8)+2 \times 18 \times 0.2^{2} /(2 \times 1.5)$ or $1 / 2 m v^{2}=2 \times 18 \times 1^{2} /(2 \times 1.5)-m g(2)$ Speed at M is $4.24 \mathrm{~ms}^{-1}$	A1 B1 M1 A1 [5] M1 A1ft A1ft [3]	For using $\mathrm{EE}=\lambda x^{2} / 2 L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point For using the p.c.energy AG For using the p.c.energy KE, PE \& EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string

6	$\begin{aligned} & {\left[-m g \sin \theta=m L\left(\mathrm{~d}^{2} \theta / \mathrm{d} \mathrm{t}^{2}\right)\right]} \\ & \mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(g / L) \sin \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ [2]	For using Newton's second law tangentially with $a=L d^{2} \theta / \mathrm{d} t^{2}$ AG
ii	$\begin{aligned} & {\left[\mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(g / L) \theta\right]} \\ & \mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(g / L) \theta \rightarrow \text { motion is } \mathrm{SH} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{array}$	$\begin{aligned} & \text { For using } \sin \theta \approx \theta \text { because } \theta \text { is small } \\ & \text { AG } \\ & \quad\left(\theta_{\max }=0.05\right) \end{aligned}$
iii	$\begin{aligned} & {[4 \pi / 7=2 \pi / \sqrt{9.8 / L}]} \\ & L=0.8 \end{aligned}$	M1 [2]	For using $T=2 \pi / n$ where $-n^{2}$ is coefficient of θ
iv	$\begin{aligned} {[\theta} & =0.05 \cos 3.5 \times 0.7] \\ \theta & =-0.0385 \end{aligned}$ $t=1.10$ (accept 1.1 or 1.09)	M1 A1ft M1 A1ft [4]	For using $\theta=\theta$ o $\cos n t\left\{\theta=\theta_{0} \sin n t\right.$ not accepted unless the t is reconciled with the t as defined in the question $\}$ ft incorrect $L\left\{\theta=0.05 \cos \left[4.9 /(5 L)^{1 / 2}\right]\right\}$ For attempting to find $3.5 \mathrm{t}(\pi<3.5 t<$ 1.5π) for which $0.05 \cos 3.5 t=$ answer found for θ or for using $3.5\left(t_{1}+t_{2}\right)=2 \pi$ ft incorrect $L\left\{t=\left[2 \pi(5 L)^{1 / 2}\right] / 7-0.7\right\}$
v	$\begin{aligned} & \dot{\theta}^{2}=3.5^{2}\left(0.05^{2}-(-0.0385)^{2}\right) \text { or } \\ & \dot{\theta}=-3.5 \times 0.05 \sin (3.5 \times 0.7) \quad(\dot{\theta}=-0.1116 . .) \\ & \text { Speed is } 0.0893 \mathrm{~ms}^{-1} \\ & \text { (Accept answers correct to } 2 \text { s.f.) } \end{aligned}$	$\begin{array}{r} \text { M1 } \\ \\ \\ \text { A1ft } \\ \text { A1ft } \\ {[3]} \end{array}$	For using $\dot{\theta}^{2}=n^{2}\left(\theta_{0}^{2}-\theta^{2}\right)$ $\dot{\theta}=-n \theta_{0} \sin n t$ \{also allow $\dot{\theta}=$ $n \theta_{0} \cos n t$ if $\theta=\theta_{0} \sin n t$ has been used previously\} ft incorrect θ with or without 3.5 represented by $(g / L)^{1 / 2}$ using incorrect L in (iii) or for $\dot{\theta}=3.5 \times 0.05 \cos (3.5 \times 0.7)$ following previous use of $\theta=\theta_{0} \sin n t$ ft incorrect $L(L \times 0.089287 / 0.8$ with $n=3.5$ used or from $\left\|0.35 \sin \left\{4.9 /[5 L]^{1 / 2}\right\} /[5 L]^{1 / 2}\right\|$
			SR for candidates who use $\dot{\theta}$ as v. (Max 1/3) For $\mathrm{v}= \pm 0.112$

7 i	$\begin{aligned} & \text { Gain in PE }=m g a(1-\cos \theta) \\ & {\left[1 / 2 m u^{2}-1 / 2 m v^{2}=m g a(1-\cos \theta)\right]} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	For using KE loss = PE gain
	$\begin{aligned} & v^{2}=u^{2}-2 g a(1-\cos \theta) \\ & {[R-m g \cos \theta=m(\operatorname{coccel} .)]} \\ & R=m v^{2} / a+m g \cos \theta \\ & {\left[R=m\left\{u^{2}-2 g a(1-\cos \theta)\right\} / a+m g \cos \theta\right]} \\ & R=m u^{2} / a+m g(3 \cos \theta-2) \end{aligned}$	$\begin{gathered} \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[7]} \end{gathered}$	For using Newton's second law radially For substituting for v^{2} AG
ii	$\begin{aligned} & {\left[0=m u^{2} / a-5 m g\right]} \\ & u^{2}=5 a g \end{aligned}$ $\left[v^{2}=5 a g-4 a g\right]$ Least value of v^{2} is ag	M1 A1 M1 A1 [4]	For substituting $R=0$ and $\theta=180^{\circ}$ For substituting for $u^{2}(=5 a g)$ and $\theta=$ 180° in v^{2} (expression found in (i)) $\{$ but M0 if $v=0$ has been used to find $\left.u^{2}\right\}$ AG
iii	$\begin{aligned} & {\left[0=u^{2}-2 g a(1-\sqrt{3} / 2)\right]} \\ & u^{2}=a g(2-\sqrt{3}) \end{aligned}$	M1 A1 [2]	For substituting $v^{2}=0$ and $\theta=\pi / 6$ in v^{2} (expression found in (i)) Accept $u^{2}=2 a g(1-\cos \pi / 6)$

4730 Mechanics 3

1	$\begin{aligned} & 0.4\left(3 \cos 60^{\circ}-4\right)=-\mathrm{I} \cos \theta \\ & 0.4\left(3 \sin 60^{\circ}\right)=\mathrm{I} \sin \theta \\ & \\ & \\ & {[\tan \theta=-1.5 \sqrt{3} /(1.5-4) ;} \\ & \left.\mathrm{I}^{2}=0.4^{2}\left[(1.5-4)^{2}+(1.5 \sqrt{3})^{2}\right]\right] \\ & \theta=46.1 \text { or } \mathrm{I}=1.44 \\ & \\ & \mathrm{I}=1.44 \text { or } \theta=46.1 \end{aligned}$	A1 M1 A1ft [7]	For using $\mathrm{I}=\Delta \mathrm{mv}$ in one direction SR: Allow B1 (max 1/3) for $3 \cos 60^{\circ}-4=-\mathrm{I} \cos \theta \text { and } 3 \sin 60^{\circ}=\mathrm{I} \sin \theta$ For eliminating I or θ (allow following SR case) Allow for θ (only) following SR case. For substituting for θ or for I (allow following SR case) ft incorrect θ or I ; allow for θ (only) following SR case.
	Alternatively $\begin{aligned} & \mathrm{I}^{2}=1.2^{2}+1.6^{2}-2 \times 1.2 \times 1.6 \cos 60^{\circ} \quad \text { or } \\ & { }^{\prime} \mathrm{V}^{\prime 2}=3^{2}+4^{2}-2 \times 3 \times 4 \cos 60^{\circ} \\ & \mathrm{I}=1.44 \\ & \frac{\sin \theta}{3(\text { or } 1.2)}=\frac{\sin 60}{\sqrt{13(\text { or } 2.08)}} \text { or } \\ & \frac{\sin \alpha}{4(\text { or } 1.6)}=\frac{\sin 60}{\sqrt{13(\text { or } 2.08)}} \text { and } \theta=120-\alpha \\ & \theta=46.1 \end{aligned}$	M1 A1 M1 A1 M1 A1ft A1 [7]	For use of cosine rule For correct use of factor 0.4 (= m) For use of sine rule α must be angle opposite 1.6; ($\alpha=73.9$) ft value of I or ' V '
2	$\begin{aligned} & 2 a+3 b=2 \times 4 \\ & b-a=0.6 \times 4 \\ & {[2(b-2.4)+3 b=8]} \\ & b=2.56 \\ & v=2.56 \end{aligned}$	M1 A1 M1 A1 M1 A1 B1ft [7]	For using the principle of conservation of momentum For using NEL For eliminating a $\mathrm{ft} \mathrm{v}=\mathrm{b}$
3(i)	$\begin{aligned} & 2 \mathrm{~W}\left(\mathrm{a} \cos 45^{\circ}\right)=\mathrm{T}(2 \mathrm{a}) \\ & \mathrm{W}=\sqrt{2} \mathrm{~T} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	For using 'mmt of $2 \mathrm{~W}=\mathrm{mmt}$ of T ' AG
(ii)	Components (H, V) of force on BC at B are $\mathrm{H}=-\mathrm{T} / \sqrt{2}$ and $\mathrm{V}=\mathrm{T} / \sqrt{2}-2 \mathrm{~W}$ $\mathrm{W}(\mathrm{a} \cos \alpha)+\mathrm{H}(2 \mathrm{a} \sin \alpha)=\mathrm{V}(2 \mathrm{a} \cos \alpha)$ $[\mathrm{W} \cos \alpha-\mathrm{T} \sqrt{2} \sin \alpha=\mathrm{T} \sqrt{2} \cos \alpha-4 \mathrm{~W} \cos \alpha]$ $\mathrm{T} \sqrt{2} \sin \alpha=(5 \mathrm{~W}-\mathrm{T} \sqrt{2}) \cos \alpha$ $\tan \alpha=4$	B1 M1 A1 M1 A1ft A1 [6]	For taking moments about C for BC For substituting for H and V and reducing equation to the form $\mathrm{X} \sin \alpha=\mathrm{Y} \cos \alpha$


	```Alternatively for part (ii) anticlockwise mmt = \(\mathrm{W}(\mathrm{a} \cos \alpha)+2 \mathrm{~W}\left(2 \mathrm{a} \cos \alpha+\mathrm{a} \cos 45^{\circ}\right)\) \(=\mathrm{T}\left[2 \mathrm{a} \cos \left(\alpha-45^{\circ}\right)+2 \mathrm{a}\right]\) \([5 \mathrm{~W} \cos \alpha+\sqrt{2} \mathrm{~W}=\) \(\mathrm{T}(\sqrt{2} \cos \alpha+\sqrt{2} \sin \alpha)+2]\) \(\mathrm{T} \sqrt{2} \sin \alpha=(5 \mathrm{~W}-\mathrm{T} \sqrt{2}) \cos \alpha\) \(\tan \alpha=4\)```	M1   A1   A1   M1   A1ft   A1   [6]	For taking moments about C for the whole   For reducing equation to the form $\mathrm{X} \sin \alpha=\mathrm{Y} \cos \alpha$
4(i)	$\begin{aligned} & {\left[-0.2\left(\mathrm{v}+\mathrm{v}^{2}\right)=0.2 \mathrm{a}\right]} \\ & {\left[\mathrm{v} \mathrm{dv} / \mathrm{dx}=-\left(\mathrm{v}+\mathrm{v}^{2}\right)\right.} \\ & {[1 /(1+\mathrm{v})] \mathrm{dv} / \mathrm{dx}=-1} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	For using Newton's second law For using $\mathrm{a}=\mathrm{v} \mathrm{dv} / \mathrm{dx}$ AG
(ii)	$\begin{aligned} & \ln (1+v)=-x(+C) \\ & \ln (1+v)=-x+\ln 3 \\ & {\left[(1+d x / d t) / 3=e^{-x} \rightarrow d x / d t=3 e^{-x}-1\right.} \\ & {\left[-e^{x} /\left(3-e^{x}\right)\right] d x / d t=-1} \end{aligned}$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{array}$	For integrating   For transposing for v and using $\mathrm{v}=\mathrm{dx} / \mathrm{dt}$ AG
(iii)	$\begin{aligned} & {\left[\ln \left(3-\mathrm{e}^{\mathrm{x}}\right)=-\mathrm{t}+\ln 2\right]} \\ & \ln \left(3-\mathrm{e}^{x}\right)=-t+\ln 2 \\ & \text { Value of } \mathrm{t} \text { is } 1.96(\text { or } \ln \{2 \div(3-e)\} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	For integrating and using $\mathrm{x}(0)=0$
5(i)	$\begin{aligned} & \text { Loss of } \mathrm{EE}=120\left(0.5^{2}-0.3^{2}\right) /(2 \times 1.6) \\ & \text { and gain in PE }=1.5 \times 4 \\ & \mathrm{v}=0 \text { at } \mathrm{B} \text { and loss of } \mathrm{EE}=\text { gain in PE }(=6) \\ & \rightarrow \text { distance } \mathrm{AB} \text { is } 4 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1	For using $\mathrm{EE}=\lambda \mathrm{x}^{2} / 2 \mathrm{~L}$ and $\mathrm{PE}=\mathrm{Wh}$   For comparing EE loss and PE gain AG
(ii)	$\begin{aligned} & {[120 \mathrm{e} / 1.6=1.5]} \\ & \mathrm{e}=0.02 \\ & \text { Loss of } \mathrm{EE}=120\left(0.5^{2}-0.02^{2}\right) /(2 \times 1.6) \\ & \quad\left(\text { or } 120\left(0.3^{2}-0.02^{2}\right) /(2 \times 1.6)\right) \\ & \text { Gain in } \mathrm{PE}=1.5(2.1-1.6-0.02) \\ & \quad \text { (or } 1.5(1.9+1.6+0.02) \text { loss) } \\ & {[\mathrm{KE} \text { at max speed }=9.36-0.72} \\ & \quad \text { (or } 3.36+5.28)] \\ & 1 / 2(1.5 / 9.8) \mathrm{v}^{2}=9.36-0.72 \text { en } \\ & \text { Maximum speed is } 10.6 \mathrm{~ms}^{-1} \end{aligned}$	M1   A1   B1ft      B1ft      M1   A1   A1   $[7]$	For using $T=m g$ and $T=\lambda x / L$   ft incorrect e only   ft incorrect e only   For using KE at max speed $=$ Loss of EE - Gain (or + loss) in PE
	First alternative for (ii) x is distance AP $\begin{array}{r} {\left[1 / 2(1.5 / 9.8) v^{2}+1.5 x+120(0.5-x)^{2} / 3.2=\right.} \\ \left.120 \times 0.5^{2} / 3.2\right] \end{array}$   KE and PE terms correct   EE terms correct $\begin{aligned} & \mathrm{v}^{2}=470.4 \mathrm{x}-490 \mathrm{x}^{2} \\ & {[470.4-980 \mathrm{x}=0]} \\ & \mathrm{x}=0.48 \end{aligned}$   Maximum speed is $10.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using energy at $\mathrm{P}=$ energy at A   For attempting to solve $\mathrm{dv}^{2} / \mathrm{dx}=0$

physicsandmathstutor.com

	$\begin{aligned} & \text { Second alternative for (ii) } \\ & {[120 \mathrm{e} / 1.6=1.5]} \\ & \mathrm{e}=0.02 \\ & {[1.5-120(0.02+\mathrm{x}) / 1.6=1.5 \ddot{x} / \mathrm{g}]} \\ & \\ & \mathrm{n}=\sqrt{490} \\ & \mathrm{a}=0.48 \end{aligned}$   Maximum speed is $10.6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For using $T=m g$ and $T=\lambda x / L$   For using Newton's second law For obtaining the equation in the form $\ddot{x}=-n^{2} x$, using ( $A B-L-e_{\text {equil }}$ ) for amplitude and using $\mathrm{v}_{\text {max }}=$ na.
6(i)	$\begin{aligned} & \text { PE gain by } \mathrm{P}=0.4 \mathrm{~g} \times 0.8 \sin \theta \\ & \text { PE loss by } \mathrm{Q}=0.58 \mathrm{~g} \times 0.8 \theta \\ & \\ & 1 / 2(0.4+0.58) \mathrm{v}^{2}=\mathrm{g} \times 0.8(0.58 \theta-0.4 \sin \theta) \\ & \mathrm{v}^{2}=9.28 \theta-6.4 \sin \theta \end{aligned}$	B1   B1   M1   A1ft   A1   [5]	For using KE gain = PE loss AEF
(ii)	$\begin{aligned} & 0.4 \mathrm{~g} \sin \theta-\mathrm{R}=0.4 \mathrm{v}^{2} / 0.8 \\ & {[0.4 \mathrm{~g} \sin \theta-\mathrm{R}=4.64 \theta-3.2 \sin \theta]} \\ & \mathrm{R}=7.12 \sin \theta-4.64 \theta \end{aligned}$	M1   A1   M1   A1   [4]	For applying Newton's second law to P and using $a=v^{2} / r$   For substituting for $\mathrm{v}^{2}$ AG
(iii)	$R(1.53)=0.01(48 \ldots), R(1.54)=-0.02(9 \ldots)$ or simply $\mathrm{R}(1.53)>0$ and $\mathrm{R}(1.54)<0$ $\mathrm{R}(1.53) \times \mathrm{R}(1.54)<0 \rightarrow 1.53<\alpha<1.54$	M1   A1   M1   A1   [4]	For substituting 1.53 and 1.54 into $\mathrm{R}(\theta)$   For using the idea that if $\mathrm{R}(1.53)$ and $R(1.54)$ are of opposite signs then $R$ is zero (and thus P leaves the surface) for some value of $\theta$ between 1.53 and 1.54 . AG
7(i)	$\begin{aligned} & \mathrm{T}_{\mathrm{AP}}=19.6 \mathrm{e} / 1.6 \text { and } \mathrm{T}_{\mathrm{BP}}=19.6(1.6-\mathrm{e}) / 1.6 \\ & 0.5 \mathrm{~g} \sin 30^{\circ}+12.25(1.6-\mathrm{e})=12.25 \mathrm{e} \\ & \text { Distance AP is } 2.5 \mathrm{~m} \end{aligned}$	M1   A1   M1   A1ft   A1   [5]	For using $\mathrm{T}=\lambda \mathrm{e} / \mathrm{L}$   For resolving forces parallel to the plane
(ii)	Extensions of AP and BP are $0.9+x$ and 0.7 - x respectively $\begin{array}{\|l\|} 0.5 \mathrm{~g} \sin 30^{\circ}+19.6(0.7-\mathrm{x}) / 1.6 \\ \ddot{x}=-49 \mathrm{x} \end{array}-19.6(0.9+\mathrm{x}) / 1.6=0.5 \ddot{x}$   Period is 0.898 s	B1   B1ft   B1   M1   A1   [5]	AG   For stating $\mathrm{k}<0$ and using $\mathrm{T}=2 \pi / \sqrt{-k}$
(iii)	$\begin{aligned} & 2.8^{2}=49\left(0.5^{2}-x^{2}\right) \\ & x^{2}=0.09 \\ & x=0.3 \text { and }-0.3 \end{aligned}$	M1   A1ft   A1   A1ft   [4]	For using $\mathrm{v}^{2}=\omega^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)$ where $\omega^{2}=-\mathrm{k}$ ft incorrect value of k   May be implied by a value of $x$ ft incorrect value of k or incorrect value of $\mathrm{x}^{2}$ (stated)


1	For included angle marked $\alpha$ or for $0.8(10.5-8.5 \cos \alpha)=4 \cos \beta$   For opposite side marked $4 / 0.8$ (or 4 ) or for $--0.8 \times 8.5 \sin \alpha=4 \sin \beta$ $\begin{aligned} & 8.4^{2}+6.8^{2}-2 x 8.4 \times 6.8 \cos \alpha=4^{2} \\ & \alpha=28.1^{\circ} \end{aligned}$	M1   A1   A1   M1   A1ft   A1   [6]	For triangle with two of its sides marked $0.8 \times 10.5$ and $0.8 \times 8.5$ (or 10.5 and 8.5 ) or for using $\mathrm{I}=\Delta \mathrm{mv}$ in one direction.   Allow B1 for omission of 0.8   Allow B1 for omission of 0.8   For using the cosine rule or for eliminating $\beta$   ft 0.8 mis-used or not used
2(i)	$\left[100 \mathrm{a}=2 \mathrm{a} \mathrm{~V}_{\mathrm{B}}\right]$   Vertical component at B is 50 N Vertical component at C is 150 N	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	For taking moments about A for AB
(ii)	$\begin{aligned} & 100(0.5 a)+(\sqrt{3} a) F=150 a \text { or } \\ & 100 a+100(1.5 a)=150 a+(\sqrt{3} a) F \end{aligned}$   Frictional force is 57.7 N   Direction is to the right	M1   A1ft A1 B1 [4]	For taking moments about B for BC (3 terms needed) or about A for the whole (4 terms needed)
3(i)	$\begin{aligned} & u=4 \\ & v=2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$ [2]	
(ii)	$\begin{aligned} & \mathrm{mu}=\mathrm{ma}+\mathrm{mb}(\text { or } \mathrm{u}=\mathrm{b}-\mathrm{a}) \\ & \mathrm{u}=\mathrm{b}-\mathrm{a}(\text { or } \mathrm{mu}=\mathrm{ma}+\mathrm{mb}) \\ & \mathrm{a}=0 \text { and } \mathrm{b}=4 \mathrm{~ms}^{-1} \end{aligned}$   Speed of A is $2 \mathrm{~ms}^{-1}$ and direction at $90^{\circ}$ to the wall   Speed of B is $4 \mathrm{~ms}^{-1}$ and direction parallel to the wall	M1   A1   B1   A1ft   A1ft   A1ft   [6]	For using the principle of conservation of momentum or for using NEL with e = 1   ft incorrect u   ft incorrect v   ft incorrect u
4(i)	$\begin{aligned} & {\left[0.25 \mathrm{dv} / \mathrm{dt}=3 / 50-\mathrm{t}^{2} / 2400\right]} \\ & \\ & \mathrm{v}=12 \mathrm{t} / 50-\mathrm{t}^{3} / 1800 \\ & {[\mathrm{v}(12)=1.92]} \\ & {\left[0.25 \mathrm{dv} / \mathrm{dt}=\mathrm{t}^{2} / 2400-3 / 50 \rightarrow\right.} \\ & \left.\mathrm{v}=\mathrm{t}^{3} / 1800-12 \mathrm{t} / 50+\mathrm{C}_{2}\right] \\ & {\left[1.92=0.96-2.88+\mathrm{C}_{2}\right]} \\ & \mathrm{v}=\mathrm{t}^{3} / 1800-12 \mathrm{t} / 50+3.84 \\ & \mathrm{v}(24)=5.76=3 \times \mathrm{v}(12) \end{aligned}$	M1   M1   A1   M1   M1   M1   A1   A1   [8]	For using Newton's second law ( $1^{\text {st }}$ or $2^{\text {nd }}$ stage)   For attempting to integrate ( $1^{\text {st }}$ stage) and using $v(0)=0$ (may be implied by the absence of $+\mathrm{C}_{1}$ )   For evaluating v when force is zero For using Newton's second law ( ${ }^{\text {nd }}$ stage) and integrating For using $\mathrm{v}(12)=1.92$ AG


(ii)	Sketch has $\mathrm{v}(0)=0$ and slope decreasing (convex upwards) for $0<\mathrm{t}<12$   Sketch has slope increasing (concave upwards) for $12<\mathrm{t}<24$   Sketch has $\mathrm{v}(\mathrm{t})$ continuous, single valued and increasing (except possibly at $\mathrm{t}=12$ ) with $\mathrm{v}(24)$ seen to be $>2 \mathrm{v}(12)$	B1   B1   B1   [3]	
5(i)	For using amplitude as a coefficient of a relevant trigonometric function.   For using the value of $\omega$ as a coefficient of $t$ in a relevant trigonometric function.   $\mathrm{x}_{1}=3 \operatorname{cost}$ and $\mathrm{x}_{2}=4 \cos 1.5 \mathrm{t}$	$\begin{aligned} & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	
(ii)	Part distance is 20 m $[20-(-3.62)]$   Distance travelled by $\mathrm{P}_{2}$ is 23.6 m	M1   A1   M1   A1   [4]	For using distance travelled by $\mathrm{P}_{2}$ for $0<\mathrm{t}<5 \pi / 3$ is $5 \mathrm{~A}_{2}$   For subtracting displacement of $\mathrm{P}_{2}$ when $\mathrm{t}=5.99$ from part distance.
(iii)	$\dot{x}_{1}=-3 \sin t ; \dot{x}_{2}=-6 \sin 1.5 t$   $\mathrm{v}_{1}=0.867, \mathrm{v}_{2}=-2.55$; opposite directions	M1   A1   M1   A1   [4]	For differentiating $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$   For evaluating when $t=5.99$ (must use radians)
	Alternative for (iii): $\begin{aligned} & \mathrm{v}_{1}^{2}=3^{2}-2.87^{2}, \mathrm{v}_{2}^{2}=2.25\left[4^{2}-(-3.62)^{2}\right] \\ & {\left[\pi<5.99<2 \pi \rightarrow \mathrm{v}_{1}>0,\right.} \\ & \left.4 \pi / 3<5.99<2 \pi \rightarrow \mathrm{v}_{2}<0\right] \\ & \mathrm{v}_{1}=0.867, \mathrm{v}_{2}=-2.55 ; \text { opposite directions } \end{aligned}$	M1   A1   M1   A1	For using $\mathrm{v}^{2}=\mathrm{n}^{2}\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)$ (must use radians to find values of $x$ )   For using the idea that v starts -ve and changes sign at intervals of T/2 s
6(i)	PE loss at lowest allowable point $=25 \mathrm{~W}$   EE gain $=32000 \times 5^{2} /(2 \times 20)$ $[25 \mathrm{~W}=20000]$   Value of W is 800	B1   M1   A1   M1   A1   [5]	For using $E E=\lambda x^{2} /(2 \mathrm{~L})$; may be scored in (i) or in (ii)   For equating PE loss and EE gain and attempting to solve for W
(ii)	$\begin{aligned} & {[800=32000 \mathrm{x} / 20]} \\ & \begin{array}{l} 1 / 2(800 / 9.8) \mathrm{v}^{2} \\ = \\ = \end{array} 0 \times 20.5-32000 \times 0.5^{2} /(2 \times 20) \end{aligned}$   Maximum speed is $19.9 \mathrm{~ms}^{-1}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$ [4]	For using $W=\lambda x / L$ at max speed For using the principle of conservation of energy (3 terms required)
(iii)	$(800) \ddot{x} / \mathrm{g}=800-32000 \times 5 / 20$   Max. deceleration is $88.2 \mathrm{~ms}^{-2}$	M1   A1   A1   [3]	For applying Newton's second law to jumper at lowest point (3 terms needed)


7(i)	$\left[1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{~m} 6^{2}=\mathrm{mg}(0.7)\right]$   Speed of P before collision is $7.05 \mathrm{~ms}^{-1}$   Coefficient of restitution is 0.695	M1   A1   B1ft   [3]	For using the principle of conservation of energy for $P$ (3 terms needed)   ft $4.9 \div$ speed of $P$ before collision
(ii)	$\begin{aligned} & {\left[1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{~m} 4.9^{2}-\mathrm{mg} 0.7(1-\cos \theta)\right]} \\ & \mathrm{v}^{2}=3.43(3+4 \cos \theta) \\ & \mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / 0.7 \\ & {[\mathrm{~T}-\mathrm{m} 9.8 \cos \theta=\mathrm{m} 3.43(3+4 \cos \theta) / 0.7]} \\ & \text { Tension is } 14.7 \mathrm{~m}(1+2 \cos \theta) \mathrm{N} \end{aligned}$	M1   A1   M1   A1   M1   A1   [6]	For using the principle of conservation of energy for Q   Accept any correct form   For using Newton's second law radially with $a_{r}=v^{2} / r$   For substituting for $\mathrm{v}^{2}$ AG
(iii)	$\mathrm{T}=0 \rightarrow \theta=120^{\circ}$   Radial acceleration is $( \pm) 4.9 \mathrm{~ms}^{-1}$ or transverse acceleration is $( \pm) 8.49 \mathrm{~ms}^{-1}$ Radial acceleration is $( \pm) 4.9 \mathrm{~ms}^{-1}$ and transverse acceleration is $( \pm) 8.49 \mathrm{~ms}^{-1}$	B1   M1   A1   B1   [4]	```For using ar = -gcos } {or 3.43(3+4\operatorname{cos}0)/0.7} or att =-gsin}```
			SR for candidates with a sin/cos mix in the work for M1 A1 B1 immediately above.   (max. 1/3)   Radial acceleration is $( \pm) 8.49 \mathrm{~ms}^{-1}$ and transverse acceleration is $( \pm) 4.9 \mathrm{~ms}^{-1}$ B1
(iv)	$\begin{aligned} & {\left[\mathrm{V}^{2}=3.43\{3+4(-0.5)\} \times 0.5^{2}\right. \text { or }} \\ & \left.\mathrm{V}^{2}=\left(-\mathrm{gcos} 120^{\circ} \times 0.7\right) \times \cos ^{2} 60^{\circ}\right] \\ & \mathrm{V}^{2}=0.8575 \\ & {\left[\mathrm{mgH}=1 / 2 \mathrm{~m}\left(4.9^{2}-0.8575\right)\right. \text { or }} \\ & \quad \mathrm{mg}(\mathrm{H}-1.05)=1 / 2 \mathrm{~m}(3.43- \\ & 0.8575)] \quad \\ & \text { Greatest height is } 1.18 \mathrm{~m} \end{aligned}$	M1   A1   M1   A1   [4]	For using $\mathrm{V}=\mathrm{v}\left(120^{\circ}\right) \mathrm{x} \cos 60^{\circ}$   AG   For using the principle of conservation of energy


1	$(-) 15 \cos \alpha=(0-) 0.5 \times 22$ or $15 \sin \beta=0.5 \times 22$   Impulse makes angle $42.8^{\circ}$ ( 0.748 rads) with negative x -axis	M1   A1   A1   [3]	M1 for using I $=\Delta(\mathrm{mv})$ in ' x ' direction or for sketching $\Delta$ reflecting $\underline{\mathbf{I}}=\mathrm{m}(\underline{\mathbf{v}}-\underline{\mathbf{u}})$   AEF, but angle must be clear
ii	$\begin{aligned} & 15 \sin \alpha=0.5 \mathrm{v} \text { or } 15 \cos \beta=0.5 \mathrm{v} \\ & \text { or }(0.5 \mathrm{v})^{2}=15^{2}-11^{2} \end{aligned}$   Correct explicit expression for v Speed is $20.4 \mathrm{~ms}^{-1}$	M1   A1   A1   [3]	For using $I=\Delta(\mathrm{mv})$ in ' $y$ ' direction or using sketched $\Delta$


2	$\begin{aligned} & 1 / 2(\mathrm{~m})\left(\mathrm{v}^{2}-6^{2}\right)=-(\mathrm{m}) \mathrm{g} \times 0.5 \text { in (i) or } \\ & 1 / 2(\mathrm{~m})\left(\mathrm{v}^{2}-6^{2}\right)=-(\mathrm{m}) \mathrm{g} \times 1 \text { in (ii) } \\ & \mathrm{v}^{2}=26.2 \text { in (i) and } 16.4 \text { in (ii) } \\ & \\ & \mathrm{T}=0.4 \mathrm{v}^{2} / 0.5 \text { in (i) or } \\ & \mathrm{T}+0.4 \mathrm{~g}=0.4 \mathrm{v}^{2} / 0.5 \\ & \text { Tension is } 21.0 \mathrm{~N} \text { in (i) (20.96) } \\ & 9.2 \mathrm{~N} \text { in (ii) } \end{aligned}$	M1 A1 M1 A1 A1 A1 $[6]$	For using the principle of conservation of energy in (i) or (ii)   soi   For using Newton's second law with $a=v^{2} / L$. M1 for either attempt, A1 for both right


$\mathrm{i}_{\mathrm{i}}^{3}$	$2.8 V=1.4 \times 72$   Vertical component at $P$ is 36 N	M1 A1 [2]	For taking moments about $Q$ for $P Q$ or for using symmetry
ii	$36+N=72+54$   Normal component at $R$ is 90 N	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	For resolving forces vertically on both rods AG
iii	$\begin{aligned} & 1.44 \mathrm{~F}=1.2 \times 90-0.8 \times 54 \text { or } \\ & 72 \times 1.4+54 \times 3.6+1.44 \mathrm{~F}=90 \times 4 \end{aligned}$   with not more than 1 error in either case   Equation correct and leading to $\mathrm{F}=45$   For using $\mathrm{F}=\mu \mathrm{R}$   Coefficient is 0.5	M1   A1   A1   M1   A1   [5]	For taking moments about $Q$ for $Q R$ or about $P$ for the whole structure (all terms needed)


$\begin{aligned} & 4 \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & 0.4(7 \mathrm{x} 0.6)-0.3 \mathrm{x} 2.8=0.4 \mathrm{a}+0.3 \mathrm{~b} \\ & 0.7(7 \mathrm{x} 0.6+2.8)=\mathrm{b}-\mathrm{a} \end{aligned}$   Speed of $B$ is $4 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [6]	For using the principle of conservation of momentum   For using e( $\Delta u)=\Delta v$   For eliminating a from equations
ii	$a=(-) 0.9$   Component perp. to l.o.c. is 5.6 $\begin{aligned} & \tan \alpha=5.6 / 0.9 \\ & \alpha=80.9^{\circ} \end{aligned}$   Angle turned through is $46.0^{\circ}\left(0.803^{\circ}\right)$	B1   B1   M1   A1   A1ft   [5]	For attempting to find $\alpha$ - the angle between the direction of motion of A after collision and the l.o.c. to the left, or $90^{\circ}-\alpha$ $126.9^{\circ}-\alpha$


5			
i	$2.45 e / 0.5=0.05 g$   $(e=0.1)$	M1   A1	For using $T=\lambda e / L$ and resolving forces   vertically   accept use of 0.1 to show both sides equal   to 0.49   AG
Distance from O is $0.5+0.1=0.6 \mathrm{~m}$	[3]		


6	$\begin{aligned} & 112 e / 4=3.5 \times 9.8 \times \frac{40}{49} \\ & V^{2}=2 \times 8 \times(4+1) \\ & V^{2}=80 \\ & 0.5 \sqrt{80}=(0.5+3.5) u \end{aligned}$   Initial speed of combined particles is $1 / 2 \sqrt{5} \mathrm{~ms}^{-1}$	M1   A1   M1   A1   M1   A1   [6]	For using $m g \sin \theta$ and $\lambda e / L$   For using $s=4+e$ and $\mathrm{a}=8$ in $v^{2}=2 a s$, or by energy   For using the principle of conservation of momentum   AG $\qquad$
ii	$\begin{aligned} & \text { Gain in } \mathrm{EE}=(112 /(2 \times 4))\left\{(X+1)^{2}-1^{2}\right\} \\ & \text { Loss of } \mathrm{KE}=1 / 2(0.5+3.5) \times 5 / 4 \\ & \text { Loss of } \mathrm{PE}=(0.5+3.5) \times 9.8 \times \frac{40}{49} X \\ & \\ & 14\left(\mathrm{X}^{2}+2 \mathrm{X}\right)=2.5+32 \mathrm{X} \\ & 28 \mathrm{X}^{2}-8 \mathrm{X}-5=0 \end{aligned}$	M1   A1   B1   B1   M1   A1   [6]	For using $\mathrm{EE}=\lambda \mathrm{x}^{2} / 2 \mathrm{~L}$   For using the principle of conservation of energy   AG
OR	$\begin{aligned} & T-m g \sin \theta=-m a \\ & \frac{112(x+1)}{4}-4 g \frac{40}{49}=-4 \mathrm{a} \\ & \int(7 x-1) \mathrm{d} x=-\int v \mathrm{~d} v(+c) \\ & \frac{7 x^{2}}{2}-x=-\frac{v^{2}}{2}+c \\ & c=\frac{5}{8} \\ & 28 X^{2}-8 X-5=0 \end{aligned}$	M1   A1   M1   A1   A1   A1   [6]	For use of $F=m a$ allow one sign slip for A1   Using $\mathrm{a}=v \frac{\mathrm{~d} v}{\mathrm{dx}}$ and integrating   AG Convincingly


7	$\begin{aligned} & 0.2 g-v^{2} / 2000=0.2 v(\mathrm{~d} v / \mathrm{d} x) \\ & \left(\frac{400 v}{3920-v^{2}}\right) \frac{d v}{d x}=1 . \end{aligned}$	M1 A1   [2]	For using Newton's second law with $a=v(\mathrm{~d} v / \mathrm{d} x)$   AG Convincing, with no slips.
ii	$\begin{aligned} & -200 \ln \left(3920-v^{2}\right)=x+(A) \\ & -200 \ln (3920)=A \\ & x=200 \ln \left(\frac{3920}{3920-v^{2}}\right) \\ & \mathrm{e}^{x / 200}=3920 /\left(3920-v^{2}\right) \\ & v^{2}=3920\left(1-\mathrm{e}^{-x / 200}\right) \\ & 0<\mathrm{e}^{-x / 200} \rightarrow v^{2}<3920 \end{aligned}$	M1   A1   M1   A1   M1   A1   B1   [7]	For separating variables and integrating   For using $\mathrm{v}(0)=0$   For using inverse ln process   AG Convincingly - dep on correct answer
iii	$\begin{aligned} & \text { Using } 0.2 g-v^{2} / 2000=0.2 a \\ & v=40 \\ & \text { Gain in } \mathrm{KE}=1 / 20.2 \times 1600 \\ & x=200 \ln \left(\frac{3920}{3920-1600}\right)(=104.90) \\ & 0.2 \mathrm{~g} x(104.9)-160 \\ & \text { Work done is } 45.6 \mathrm{~J} \end{aligned}$	M1   A1   B1ft   B1ft   M1   A1   [6]	For using WD = loss of PE - gain in KE
OR	$\begin{aligned} & \text { Using } 0.2 g-v^{2} / 2000=0.2 a \\ & v=40 \\ & x=200 \ln \left(\frac{3920}{3920-1600}\right)(=104.90 \ldots) \\ & \text { WD }=\int \frac{v^{2}}{2000} d x+c \\ & =\int \frac{3920}{2000}\left(1-\mathrm{e}^{-x / 200}\right) \mathrm{d} x \\ & =3920 / 2000\left(x+200 e^{(-x / 200)}-392\right. \end{aligned}$   Work done is 45.6 J	M1   A1   B1ft   M1   A1   A1   [6]	Use of WD $=\int F \mathrm{~d} x$ and subst for $v^{2}$


1	$\begin{aligned} & {[5 \cos \theta-4=0]} \\ & \cos \theta=0.8 \\ & {[I=0.3(5 \sin \theta-0) \text { or } \sin \theta=I \div(0.3 \times 5)]} \\ & I=0.9 \end{aligned}$	M1   A1   M1   A1   [4]	For using $v_{x}-u_{x}=0$   or for a triangle sketched with sides $I / 0.3,4$ and 5 with angles $\theta$ and $90^{\circ}$ opposite $I / m$ and 5 respectively.   AG   For using I $=m(\Delta v)$ in ' $y$ ' direction or $I=\sqrt{\left((0.3 \times 5)^{2}-(0.3 \times 4)^{2}\right)} \quad$ M1


2	$(1.8+3.2) R_{B}=(3.2+0.9) \times 300+1.6 \times 400$   Force exerted on $A B$ is 374 N   Force exerted on $A C$ is 326 N	M1   A1   A1   B1   [4]	For taking moments about $C$ for the whole for M1 need 3 terms; allow 1 sign error and/or 1 length error and/or still including sin/cos   or for taking moments about $B$ for whole $(1.8+3.2) R_{C}=(1.8+1.6) \times 400+0.9 \times 300$ giving force on $A C$ first: M1A1A1A1
ii	$\begin{aligned} & 0.9 \times 300+1.2 T=1.8 \times 374 \\ & \text { Tension is } 336 \mathrm{~N} \end{aligned}$	M1   A1   A1   [3]	For taking moments about $A$ for $A B$ for M1 need 3 terms, allow 1 sign error and/or 1 length error and/or still including sin/cos or moments about $A$ for $A C$ $1.6 \times 400+1.2 T=3.2 \times 326$
iii	Horizontal component is 336 N to the left $[Y=374-300]$   Vertical component is 74 N downwards	B1ft   M1   A1ft   [3]	For resolving forces on $A B$ vertically

Give credit for part (ii) done on the way to part (i) if not contradicted in (ii).

3	$\begin{aligned} & 0.25(\mathrm{~d} v / \mathrm{d} t)=-0.2 v^{2} \\ & 0.25 \int v^{-2} d v=-0.2 t(+C) \\ & -v^{-1} / 4=-t / 5+C \\ & {[1 / 4 v=t / 5+1 / 20]} \\ & v=\frac{5}{4 t+1} \text { oe } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { dep } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	For using Newton's second law with $a=\mathrm{d} v / \mathrm{d} t$. Allow sign error and/or omitting mass   For separating variables and attempting to integrate (ie get $v^{-1}$ and $t$ ).   For using $v(0)=5$ to obtain $C$
ii	$x=(5 / 4) \ln (4 t+1)(+B)$   Subst $v=0.2$ in (i) to find $t$   Obtain $x(6)(=1.25 \ln 25$ oe (4.02359...))   Average speed is $0.671 \mathrm{~ms}^{-1}$	M1 A1 M1 M1 A1 [5]	For using $v=\mathrm{d} x / \mathrm{d} t$ and integrating Implied by $t=6$   May be written as $\frac{5}{12} \ln 5$
	Alternatively $\ln v=-0.8 x+B$   Subst $v=0.2$ in (i) to find $t$   Obtain $x(0.2)(=1.25 \ln (5 / 0.2)$ oe (4.0239...))   Average speed is $0.671 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For using $m v(\mathrm{~d} v / \mathrm{d} x)=-0.2 v^{2}$, separating variables and integrating. Allow sign error and/or omitting mass.   Implied by $t=6$   May be written as $\frac{5}{12} \ln 5$


4	$\begin{aligned} & {[-0.2 \times 2 \ddot{\theta}=0.2 g \sin \theta]} \\ & \frac{d^{2} \theta}{d t^{2}}=-4.9 \sin \theta \end{aligned}$   For small $\theta, \sin \theta \approx \theta$ and $\ddot{\theta}=-4.9 \theta$ represents SHM	M1   A1   B1   [3]	For using Newton's second law transversely. Allow sign error and/or $\sin /$ cos error and/or missing $0.2, g$ or $l$. AG
ii	$\theta=0.15 \cos (\sqrt{4.9} t)$ oe $t=1.04$ at first occasion   $t=1.80$ at second occasion	M1 A1 A1 M1 A1 [5]	For using $\theta=A \cos (n t)$ or $A \sin (n t+\varepsilon)$. Allow sin/cos confusion   for using $t_{1}+t_{2}=2 \pi / n$
iii	Angular speed is (-) $0.297 \mathrm{rads} \mathrm{s}^{-1}$   Linear speed is (-) $0.594 \mathrm{~ms}^{-1}$	M1   A1   A1ft   [3]	For using $\dot{\theta}=-A n \sin (n t)$ oe. Allow sign error and/or ft from $\theta$ in (ii).

In (ii) \& (iii) allow M marks if angular displacement/speed has been confused with linear.

$5$	$\begin{aligned} & {[\sin \gamma=0.96 \div 1.2]} \\ & \sin \gamma=0.8 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{array}$	For using $v_{B} \sin \gamma=u_{B} \sin \beta$
ii	$\begin{aligned} & (m) 2-(m) u_{B} \cos \beta=(m) v_{B} \cos \gamma \\ & 2=v_{B}(0.6+0.28 \div 1.2) \\ & v_{B}=2.4, u_{B}=2 \end{aligned}$	M1   A1   M1   A1   A1   [5]	For using the principle of conservation of momentum. Allow sign error and/or $u_{A} \cos \alpha$ (instead of 2) for M1. allow $u_{A} \cos \alpha$ (instead of 2 ) for A1   For eliminating $u_{B}$ or $v_{B}$. Allow with cos Or $2=0.28 u_{B}+0.72 u_{B}$
iii	$\begin{aligned} & {\left[\left(2+u_{B} \cos \beta\right) e=v_{B} \cos \gamma\right]} \\ & (2+2 \times 0.28) e=2.4 \times 0.6 \\ & e=\frac{9}{16} \text { or } 0.5625 \end{aligned}$	M1   A1ft   A1   [3]	For applying Newton's exp'tal law.   Allow sign error and/or $u_{A} \operatorname{Cos} \alpha$ (instead of   2) for M1.   ft $u_{B}$ and $v_{B}$ only
iv	$\begin{aligned} & {\left[(y \text {-component })^{2}=13-4\right]} \\ & v_{A}=(y \text {-component })_{\text {before }}=3 \end{aligned}$	M1   [2]	For using $1 / 2(m) v^{2}=6.5(m)$ and $(y \text {-component })^{2}=v^{2}-2^{2}$. Allow 1 slip.


6	$\begin{aligned} & \text { PE gain }=6 \times 0.8(\sqrt{3} / 2-1 / \sqrt{2}) \\ & =2.4(\sqrt{3}-\sqrt{2}) \end{aligned} \quad \begin{array}{r} \text { EE loss }=\frac{9}{2(\pi / 10)}\left[(0.8 \pi / 4-\pi / 10)^{2}-\right. \\ \text { EE loss }=45 \pi\left[(0.2-0.1)^{2}-(0.8 \pi / 6-\pi / 10)^{2}\right] \\ =5 \pi(9 \times 0.01-0.01)=40 \pi / 100=0.4 \pi \mathrm{~J}) \end{array}$	A1   M1   A1   A1   [5]	For using PE gain $=W\left(h_{Y}-h_{X}\right)$   Shown fully, with no slips   AG   For using EE loss $=\lambda\left(e_{X}{ }^{2}-e_{Y}^{2}\right) / 2 l$. Allow slips for M1.   Fully correct   No slips in simplification AG
ii	$T=9(0.8 \pi / 6-\pi / 10) \div(\pi / 10)$   $W \sin \theta-T=6 \times \sin (\pi / 6)-90 \times(0.2 \div 6)=0$   transverse acceleration is zero $1 / 2(6 / 9.8) v^{2}=0.4 \pi-2.4(\sqrt{3}-\sqrt{2})$   Maximum speed is $1.27 \mathrm{~ms}^{-1}$	B1   M1   A1   M1   A1   A1   [6]	For attempting to show that $W \sin \theta-T=0$ at $Y$ by subst $\theta=\pi / 6$ AG No slips For using KE gain = EE loss - PE gain at Y. Need 3 terms, allow sign errors and/or g omitted.


7	$\begin{aligned} & 1 / 2 m v^{2}=1 / 2 m 5.6^{2}-m g 0.8(1-\cos \theta) \\ & v^{2}=15.68(1+\cos \theta) \\ & T-m g \cos \theta=m v^{2} / r \\ & {[T-0.3 g \cos \theta=0.3 \times 15.68(1+\cos \theta) / 0.8]} \end{aligned}$ $\text { Tension is } 2.94(3 \cos \theta+2) \mathrm{N} \text { oe }$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[7]} \end{gathered}$	For using the principle of conservation of energy. Allow sign error, sin/cos; need 3 terms.   AG No slips   For using Newton's second law. Allow sign error and/or sin/cos and/or $m$ omitted   For substituting for $v^{2}$
ii	$\theta$ is $131.8^{\circ}$ (or 2.3 rads) Accept $132^{\circ}$ (exact) $v$ is 2.29	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ {\left[\begin{array}{l} 3] \end{array} .\right.} \end{gathered}$	For putting $T=0$ and attempting to solve accept $\theta=\cos ^{-1}(-2 / 3)$   $\sqrt{15.68 / 3}$ exact
iii	$\begin{aligned} & {[\text { speed }=\|v \cos (180-\theta)\|}= \\ &\sqrt{15.68 / 3} \times(2 / 3)] \end{aligned}$   Speed at greatest height is $1.52 \mathrm{~ms}^{-1}$ $0.3 g H=1 / 20.3\left(5.6^{2}-1.52 . . .^{2}\right)$   Greatest height is 1.48 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For using ‘speed at max. height = horiz. comp. of vel. when string becomes slack'   For using the principle of conservation of energy 40/27 exact
	ALTERNATIVE for (iii) $\begin{array}{\|l} {\left[0=2.286 . .^{2} \times(1-4 / 9)-19.6 y,\right.} \\ H=0.8(1+2 / 3)+y] \\ H=1.3333 . .+0.1481 \ldots(4 / 3+4 / 27) \end{array}$   Greatest height is 1.48 m (40/27)   [ $1 / 2 m\left(2.286 \ldots{ }^{2}-\right.$ speed $\left.^{2}\right)=m g \times 0.1481 \ldots$   speed $^{2}=2.286$.. $^{2}-19.6 \times 0.1481 \ldots$... ] or   $\left[1 / 2 m\left(5.6^{2}-\right.\right.$ speed $\left.^{2}\right)=m g \times 1.481 \ldots$   speed $\left.^{2}=5.6^{2}-19.6 \times 1.481 \ldots . \quad\right]$   Speed at greatest height is $1.52 \mathrm{~ms}^{-1}$	M1   A1   M1   A1	For using $0^{2}=\dot{y}^{2}-2 g y$ and $H=0.8\{1+\cos (180-\theta)\}+y$   For using the principle of conservation of energy


Question		Answer	Marks	Guidance	
1	(i)	Triangle of velocities/momentum   All correct   Use of Pythagoras' theorem to find $I$ $I=0.075$	M1   A1   M1   A1   [4]	For right angled triangle with at least one side correctly shown ( $2.5,2,20 I$ or $0.125,0.1, I$ ) or vector equation $\left(v_{1}, v_{2}\right)=$ $(0,20 I)+(2,0)$ with at least 3 of the 4 components on the RHS correct $400 I^{2}+2^{2}=2.5^{2} \text { or } I^{2}=0.125^{2}-0.1^{2}$	may be implied by $v_{1}^{2}+v_{2}{ }^{2}=$ $2.5^{2}$ or $\sin \alpha=0.6$
1	(ii)	Components of velocity parallel to the wall before and after are 2 and 2   Components of velocity perpendicular to the wall before and after are (-) 1.5 and $1.5 e$ $\left[2^{2}+(1.5 e)^{2}=5\right]$   Coefficient is $\frac{2}{3}$ or 0.667	B1   B1   M1   A1   [4]	For using $v_{1}^{2}+v_{2}^{2}=5$ Must be perp to wall	may be implied
2	(i)	$\begin{aligned} & 2 m u \cos \alpha-m u \cos \alpha=2 m a+m b \\ & 0.5(u \cos \alpha+u \cos \alpha)=b-a \end{aligned}$   Comp of B's velocity along l.o.c. is $u \cos \alpha$ Establishing B's speed unchanged	M1   M1   A1   A1ft   A1   [5]	For using the p.c.m. parallel to l.o.c.   For using NEL parallel to l.o.c.   for both p.c.m and NEL correct \& consistent dep on M1M1 gained by stating vel perp l.o.c. still $u \sin \alpha$, hence result, dep on all previous marks	allow sign errors, $m / 2 m$, sin/cos allow sign errors, e left in   or by showing speed is still $u$ condone 'vertical' in this part
2	(ii)	$a=0$   correct interpretation of direction of $A$   Direction of $B$ is at angle $\alpha$ to l.o.c.., with an indication that removes ambiguity (eg in sketch)	B1   B1   B1   [3]	may be shown in (i) perp to l.o.c.	condone 'vertical' for perpendicular, accept sketch, and refs to sketch in (i)


Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & 0.3 v(\mathrm{~d} v / \mathrm{d} x)=-1.2 v^{3} \\ & {\left[-v^{-1}=-4 x+A\right]} \\ & {\left[-u^{-1}=0+A\right]} \\ & v=\frac{u}{4 u x+1} \end{aligned}$	M1   A1   M1*   *M1   A1   [5]	For using Newton's second law and $a=v(\mathrm{~d} v / \mathrm{d} x)$   For finding $\mathrm{d} v / \mathrm{d} x$ in terms of $v$ and attempting to integrate   For using $v(0)=u$   AG	allow missed - sign / stray $g$ / missed 0.3   allow $A / v=B x+C$ oe
3	(ii)	$\begin{aligned} & \int(4 u x+1) d x=\int u d t \\ & 2 u x^{2}+x=u t+B \\ & {[(2 \times 4-9) u=-2]} \\ & u=2 \end{aligned}$	M1*   A1   *M1   A1   [4]	For using $v=\mathrm{d} x / \mathrm{d} t$, separating the variables and attempting to integrate one side   For using $x(0)=0$ (may be implied by absence of $B$ ) and $x(9)=2$ - dep on int being done	$-1.2 v^{3}=0.3 \mathrm{~d} v / \mathrm{d} t$ and attempt to int one side M1* $8 t=1 / v^{2}-1 / u^{2}$ and subst for $v$ A1 then as main scheme
4	(i)	$\begin{aligned} & \text { EE gain }=44.1 x^{2} \div(2 x 0.75) \\ & \text { PE loss }=1.8 g(0.75+x) \\ & {\left[x^{2}-0.6 x-0.45=0\right]} \\ & \\ & \text { Extension is } 1.03 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & {[4]} \end{aligned}$	ignore signs   For using EE gain = PE loss	allow use of $(e+x)$ for $x$   $44.1 x^{2}-26.46 x-19.845=0$ allow sign errors 1.0348469...
4	(ii)	$\frac{44.1 \times 1.03}{0.75}-1.8 \times 9.8=-1.8 \ddot{x}$   Acceleration is $-24.0 \mathrm{~ms}^{-2}$	M1   M1   A1ft   A1   [4]	For using $T=\lambda x / L$ For using Newton's $2^{\text {nd }}$ law   ft their '1.03' from (i) direction must be clear	allow missed $g, m$, sign error   allow sign error $\begin{aligned} & 1.03 \rightarrow-23.84666 \\ & 1.035 \rightarrow-24.01 \\ & \hline \end{aligned}$


Question		Answer	Marks	Guidance	
5	(i)	$84.5 \times 12 L / 13=T(2 L)$   Tension is 39 N	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For taking moments about $B$ for $B C$ must use $12 / 13$ for $\cos \beta$	must be 2 terms involving $T$, $L$, 84.5 and $\sin / \cos \beta$
5	(ii)	$\begin{aligned} & X=39 \times 5 / 13 \\ & Y=84.5-39 \times 12 / 13 \end{aligned}$   $X$ is to the left and $Y$ is upwards	M1   A1 FT   A1 FT   A1cao   [4]	For resolving forces on $B C$ horiz or vert explicit expression for $X$ explicit expression for $Y$ AG (numerical values - must be correct) dep M1A1A1	must involve their $T$ and $\sin /$ cos $\beta$ accept on diagram
5	(iii)	$\begin{aligned} & 84.5 \times L \cos \alpha+48.5 \times 2 L \cos \alpha=15 \times 2 L \sin \alpha \\ & {\left[\tan \alpha=\frac{84.5+97}{30}\right]} \\ & \alpha=1.41^{\mathrm{c}} \text { or } 80.6^{\circ} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { [4] } \end{gathered}$	For taking moments about $A$ for $A B$   For obtaining a numerical expression for $\tan \alpha$	must involve 3 terms, 84.5, 48.5, $15, \sin \alpha$ and $\cos \alpha$; allow sign errors, L/2L similar scheme for those who take moments about $A$ for whole system
6	(i)	$\begin{aligned} & {[0.4 \pi=2 \pi / n]} \\ & n=5 \end{aligned}$   Distance $O A$ is 0.8 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	For using $T=2 \pi / n$   For using $v_{\text {max }}=n(O A)$	
6	(ii)	$\begin{array}{\|l} \hline[x=0.8 \cos (5 \times 1)] \\ x=0.227 \\ {[\dot{x}=-0.8 \times 5 \sin (5 \times 1)]} \\ \text { Velocity is } 3.84 \mathrm{~ms}^{-1} \end{array}$	M1   A1   M1   A1   [4]	For using $x=a \cos n t$   For using $\dot{x}=-a n \sin n t$	Use of $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$ M1   Direc needs to be shown for A1


Question		Answer	Marks	Guidance	
6	(iii)	$t$ and $x$ for one point $t$ and $x$ for second point $t$ and $x$ for third point correctly stating precisely 3 points   If B1 or B0 scored (out of first 4) on above scheme, allow, subject to max mark 2, Number of occasions is 3	$\begin{gathered} \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \\ \text { (M1) } \\ \text { (A1) } \\ \hline[5] \\ \hline \end{gathered}$	Values of $t$ are $=0.257,0.372,0.885$   Values of $x$ are $0.227,-0.227,-0.227$   sc all $3 x$ values B2   all $3 t$ values B2   one $t$ value B1   one $x$ value B1   For $t=1 \approx 0.8 T \rightarrow 3 / 4 T<1<4 / 4 T$ or equiv	$0.4 \pi-1,1-0.2 \pi, 0.6 \pi-1$   ignore ref to point when $t=1$ can show on graph
7	(i)	Tension in string $T=m g \sin \alpha$   For using $e=R \alpha-2 R / 3$ $1.8 \alpha-\sin \alpha-1.2=0$   Finding $f(1.175)$ and $f(1.185)$ correctly correct conclusion	M1   B1   B1   A1   M1   A1   A1   [7]	For using $T=\lambda x / L$ $m g \sin \alpha=1.2 m g\left(R a-\frac{2 R}{3}\right) \div \frac{2 R}{3}$   AG establish result $\approx-0.008, \text { and } \approx+0.0065$   $\mathrm{AG} \alpha=1.18$ correct to 3 significant figures	By iteration $\alpha=(1.2+\sin \alpha) / 1.8 \mathrm{M} 1$   start [1, 2], and 1 iteration A1 at least 1 more iteration, and conclusion 1.18(0427) A1
7	(ii)	Direction is towards $O$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		
7	(iii)	Gain in $\mathrm{EE}=1.2 \mathrm{mg}(1.18 R-2 R / 3)^{2} \div(2 \mathrm{x} 2 R / 3)$ PE loss $=m g R(\cos 2 / 3-\cos 1.18)$ $\begin{aligned} & v^{2}= \\ & 2 g R\left[\cos 2 / 3-\cos 1.18-0.9(1.18-2 / 3)^{2}\right] \end{aligned}$   Acceleration is $3.29 \mathrm{~ms}^{-2}$.	$\begin{gathered} \hline \text { M1* } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { [7] } \\ \hline \end{gathered}$	For using $\mathrm{EE}=\lambda e^{2} \div(2 L)$ and $\mathrm{PE}=m g h$ ignore signs For using $1 / 2 m v^{2}=$ PE loss - EE gain   For using acceleration $=v^{2} / R$	allow $\alpha$ for 1.18 for A1A1 allow sign errors   need 1.18 here If candidates use $m R \ddot{\theta}$ use equivalent scheme


Question		Answer	Marks	Guidance
1	(i)	$[40 d=30 \times 2]$   Distance is 1.5 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \\ & \hline \end{aligned}$	For taking moments about $B$ for $B C$
	(ii)	$30=0.75 R$   Horizontal component on $A B$ at $B$ is 40 N to the left   For resolving forces on $B C$ vertically, or taking moments about $C$ Vertical component on $A B$ at $B$ is 10 N down	B1   B1   M1   A1   [4]	$Y+30=40, \text { or } 40 \times 1 / 2=Y \times 2$   Accept directions on diagram, if not contradicted in text SR A1 if both magnitudes correct but directions wrong/not stated
	(iii)	$(+/-) 10 \times 2+60 \times 0.8 d=(+/-) 40 \times 1.5$   Distance is 0.833 m	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { A1 } \\ \text { [3] } \end{gathered}$	For taking moments about $A$ for $A B$   FT magnitudes of components at $B$; need to use ' $x=d \cos \theta$ '   May see moments about $A$ for $A B C(60 \times 0.8 d+40 \times 3.5=30 \times 4+$ ' 40 ' $\times 1.5$ ) or moments about $B$ for $A B$ - need to get equation with only ' $d$ ' unknown for M1
2	(i)	Since plane is smooth impulse is perpendicular to plane( so $\theta=15$ )	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	
	(ii)	Use of $v^{2}=\left(u^{2}\right)+2 \times g \times 2.5$ $v=7 \mathrm{~ms}^{-1}$   after impact:   Speed parallel to plane is $7 \sin 15^{\circ}$   $u=7 \sin 15^{\circ} / \cos 60^{\circ}$   $u=3.62$   $I=0.45\left(7 \cos 15^{\circ}+u \sin 60^{\circ}\right)$   $I=4.45$   Or For using a triangle with sides 3.15 (0.45 x 7 ), $I$ and $0.45 \times u$ (or $7, I / 0.45$ and $u$ ) and correct angles $135^{\circ}, 15^{\circ}$ and $30^{\circ}$   Use of sin rule or cos rule (correct) $\begin{aligned} & u=3.62 \\ & I=4.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [7] } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	1.81(173...)   Allow sin/cos errors   Allow sin/cos errors or $I=0.45\left(7 \cos 15^{\circ}+7 \sin 15^{\circ} \tan 60^{\circ}\right)$   4.45477.... May see $e=0.464$   Need 2 correct sides and 1 correct angle   All correct   OR $I \cos 15^{\circ}=3.15+0.45 u \cos 45^{\circ} \mathrm{M} 1$   Isin $15^{\circ}=$ mucos $45^{\circ} \quad$ B1   Solve sim equations M1, dep attempt at two comps of $I$   Answers   A1A1


Question		Answer	Marks	Guidance
3	(i)	$\begin{aligned} & v \mathrm{~d} v / \mathrm{d} x=g-0.0025 v^{2} \\ & \int \frac{v d v}{g-0.0025 v^{2}}=\int d x \\ & -200 \ln \left(g-0.0025 v^{2}\right)=x(+A) \\ & A=-200 \ln g \\ & {\left[g-0.0025 v^{2}=g \mathrm{e}^{-0.005 x}\right]} \\ & v^{2}=400 g\left(1-\mathrm{e}^{-0.005 x}\right) \\ & 0<\mathrm{e}^{-0.005 x} \leq 1 \rightarrow v^{2} \text { cannot reach } 400 g \\ & \quad \text { ie cannot reach } 3920 \end{aligned}$	M1   A1   M1   A1   M1*   *M1   A1   B1   [8]	For using N's $2^{\text {nd }}$ law with $a=v \mathrm{~d} v / \mathrm{d} x$; 3 terms   For correctly separating variable and attempting to integrate   Attempt to find $A$ from $B \ln \left(C-D v^{2}\right)$   For transposing equation to remove ln   dependent on getting other 7 marks.   Need '0 <' oe
	(ii)	$v^{2}=400 g\left(1-\mathrm{e}^{-0.5}\right)$   Speed of $P$ is $39.3 \mathrm{~ms}^{-1}$	M1   A1   [2]	For substituting for $x$ and evaluating $v$ must have $v^{2}=A+B \mathrm{e}^{C x}$ for (i), but not neces in this form
4	(i)	$\begin{aligned} & 1 / 2 m v^{2}+m g(0.6)(1-\cos \theta)=1 / 2 m 4^{2} \\ & v^{2}=4.24+11.76 \cos \theta \\ & R-0.45 g \cos \theta=0.45 \mathrm{v}^{2} / 0.6 \\ & R=3.18+13.23 \cos \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	For using the pce condone sin/cos and sign errors; need KE before and after and difference in PE   AG   For using Newton's $2^{\text {nd }}$ law, condone $\sin /$ cos and sign erorrs; 3 terms needed
	(ii)	$\begin{aligned} & \cos \theta=-3.18 / 13.23 \\ & {\left[v^{2}=4.24-11.76 \times 3.18 / 13.23\right]} \end{aligned}$   Speed is $1.19 \mathrm{~ms}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \\ \hline \end{gathered}$	For using $R=0$   $-0.24036 \ldots$ or $-106 / 441$ or $\theta=103.9^{\circ}$ ft from $R=A+B \cos \theta$, where $A, B \neq 0$   For substituting for $\cos \theta$   CAO without wrong working

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Question} \& Answer \& Marks \& Guidance \\
\hline 5 \& (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& {[0.8 m g x / 0.78=m g(5 / 13)]} \\
\& x=0.375 \\
\& \mathrm{PE}=m g(0.78+0.375) \times 5 / 13 \\
\& \mathrm{EE}=0.8 m g \times 0.375^{2} \div(2 \times 0.78) \\
\& {\left[1 / 2 m v^{2}=m(4.353 \ldots-0.7067 \ldots)\right]} \\
\& \text { Maximum speed is } 2.70 \mathrm{~ms}^{-1} \\
\& \mathrm{OR} \text { at extension } x \\
\& \mathrm{PE}=m g(x+0.78) \times \frac{5}{13} \\
\& \mathrm{EE}=\frac{0.8 m g x^{2}}{2 \times 0.78} \\
\& m g(x+0.78) \times \frac{5}{13}=\frac{1}{2} m v^{2}+\frac{0.8 m g x^{2}}{2 \times 0.78} \\
\& v^{2}=-10.05 x^{2}+7.53 x+5.88 \\
\& v^{2}=-10.05\left(x^{2}-0.749 x-0.585\right)
\end{aligned}
\] \\
for attempting to complete square
\[
v^{2}=-10.05\left((x-0.375)^{2}-0.726\right)
\] \\
Max speed is \(2.70 \mathrm{~ms}^{-1}\)
\end{tabular} \& M1
A1
B1 FT
B1 FT
M1
A1
\([6]\)
B1
B1
M1

M1
A1

A1 \& | For resolving forces and using $T=\lambda x / L$ at equilibrium position Accept 1.155 for $e+l$ |
| :--- |
| FT value of $x$ |
| FT value of $x$ |
| For using $1 / 2 m v^{2}=$ PE loss - EE gain |
| For using $1 / 2 m v^{2}=$ PE loss - EE gain $\begin{aligned} & v^{2}=-\frac{40 \times 9.8}{39} x^{2}+\frac{98}{13} x+\frac{9.8 \times 3.9 \times 2}{13} \\ & v^{2}=-\frac{392}{39}\left(x^{2}-\frac{3}{4} x-\frac{3 \times 3.9 \times 2}{40}\right) \\ & v^{2}=-\frac{392}{39}\left(\left(x-\frac{3}{8}\right)^{2}-0.725625\right) \end{aligned}$ |
| Note, after getting equation for $v^{2}$, can instead |
| Differentiate $v^{2}$ wrt $x \quad$ M1 |
| Establish max at $x=0.375 \quad$ A1 |
| Max speed $2.70 \mathrm{~ms}^{-1} \quad$ A1 | <br>

\hline
\end{tabular}

Question	Answer	Marks	Guidance
(ii)	$m g(0.78+x) \times 5 / 13=0.8 m g x^{2} \div(2 \times 0.78)$   [ $x^{2}-0.75 x-0.585=0$ if $x$ is extension] $x=1.2268$ so Distance is 2.01 m   OR put $\mathrm{v}=0$ in $v^{2}$ equation from above Solve to get $x=1.23(+0.78)=2.01 \mathrm{~m}$	M1*   A1   *M1   A1   [4]   M1A1ft M1A1	For using PE loss = EE gain or $m g(x) \times 5 / 13=0.8 m g(x-0.78)^{2} \div(2 \times 0.78)$ if $P O=x$ or $m g(x+0.78+0.375) \times 5 / 13=0.8 m g(x+0.375)^{2} \div(2 \times 0.78)$ if $P O=x+0.78+0.375$ For arranging in quadratic form and attempting to solve All nec terms required $\begin{array}{ll} {\left[x^{2}-2.31 x+0.6084=0 \text { if } P O=x\right]} & {\left[20 x^{2}=14.5125, \text { if } P O=x+0.78+0.375\right]} \\ {[x=2.0068]} & {[x=0.8518 \ldots .]} \end{array}$


Question		Answer	Marks	Guidance
6	(i)	$1 / 2 \times 2\left(5^{2}-v^{2}\right)=7.56 \quad\left(v^{2}=17.44\right)$   Speed is $4.18 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For using $1 / 2 m\left(u^{2}-v^{2}\right)=7.56$ and solving for $v$; must use ' 5 ', allow sign error/ missing $1 / 2$, missing $m$.   Do not award if this is not candidate's final answer.
	(ii)	$\begin{aligned} & v_{A y}=u_{A y}=5 \sin \alpha=4 \\ & {\left[v_{A x}{ }^{2}+4^{2}=17.44 \rightarrow v_{A x}{ }^{2}=1.44\right]} \\ & v_{A x}= \pm 1.2 \text { and } v_{A x} \text { must be less than } 0.8 \\ & \rightarrow \text { Component has magnitude } 1.2 \mathrm{~ms}^{-1} \text { and } \\ & \text { direction to the left } \end{aligned}$	B1   M1   A1   [3]	For using $v_{A x}{ }^{2}+v_{A y}{ }^{2}=17.44$
	(iii)	$\begin{aligned} & 2 \times 3-m \times 2=2 \times(-1.2)+m \times 0.8 \\ & m=3 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 FT } \\ \text { A1 } \\ \text { [3] } \end{gathered}$	For using the pcm parallel to loc must use $5 \cos \alpha, 2,0.8$ and ' 1.2 ', 4 terms or equivalent, allow sign errors, condone one mass missing   FT incorrect $v_{A X}$   CAO
	(iv)	$\begin{aligned} & {[e(3+2)=(1.2+0.8)]} \\ & e=0.4 \end{aligned}$	M1   A1   [2]	For using NEL with their ' 1.2 ' and $5 \cos \alpha, 2$ and 0.8 ; allow sign errors. Must be right way up


Question		Answer	Marks	Guidance
7	(i)	$\begin{aligned} & E_{(A P=2.9)}=120 \times 0.9^{2} / 4+180 \times 0.1^{2} / 6 \\ & =(24.3+0.3) \text { and } \\ & E_{(A P=2.1)}=120 \times 0.1^{2} / 4+180 \times 0.9^{2} / 6 \\ & =(0.3+24.3) \rightarrow \text { same for each position } \\ & \text { Conservation of energy } \rightarrow v=0 \text { when AP } \\ & =2.1, \text { string taut here so taut throughout } \\ & \text { motion }- \text { oe, } \end{aligned}$	M1   A1   B1   [3]	For using EPE $=\lambda x^{2} / 2 L$ for both strings for one position   24.6 seen twice   Need to point out that $v=0$ when $A P=2.1$ or $\mathrm{KE}=0$   Dep on M1A1
	(ii)	$\begin{aligned} & T_{A}=120(0.5+x) / 2, T_{B}=180(0.5-x) / 3 \\ & {[(30-60 x)-(30+60 x)=(+/-) 0.8 a]} \\ & a=-150 x \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [3] } \\ \hline \end{gathered}$	soi   For using Newton's $2^{\text {nd }}$ law; allow omission of 0.8 With no wrong working
	(iii)	$\begin{aligned} & \text { SHM because } a=-k(\text { where } k>0) \\ & {[T=2 \pi / \sqrt{150}]} \\ & \text { Time interval is } 0.257 \mathrm{~s} \end{aligned}$	M1   M1   A1 FT   [3]	SHM because $a=-\omega^{2} x$ or in words For using $T=2 \pi / n$; must follow from (ii) FT $\pi \div$ candidate’s $n \quad 0.256509 \ldots$
	(iv)	$\begin{aligned} & {[x=0.4 \cos (\sqrt{150} \times 0.6)=0.194]} \\ & {[\text { distance }=4 a+(a-0.194)]} \end{aligned}$   Distance travelled is 1.81 m	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	For using $x=a \cos (0.6 n)$, where $n$ follows from (ii) and $a$ is numerical.   For using $T<0.6<1.25 T \rightarrow$ distance $=4 a+(a-x)$; may be implied by $1.6<$ distance $<2.0$ CAO, no wrong working
	(v)	Speed is $4.29 \mathrm{~ms}^{-1}$.	M1   A1   [2]	For using $\dot{x}=-a n \sin (0.6 n)$, where $n$ follows from (ii)   Or using $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$, where $n$ follows from (ii) and $x$ follows from (iv) or using $\dot{x}=a n \cos (0.6 n)$ if $x=a \sin (0.6 n)$ used in (iv), where $n$ follows from (ii) Condone -4.29


		Answer	Marks	Guidance	
1		$\begin{aligned} & I^{2}=2.04^{2}+0.9^{2}-2 \times 2.04 \times 0.9 \times \frac{15}{17} \\ & 1.32(\mathrm{~N}) \\ & 46.8\left(^{\circ}\right) \text { with initial direction of ball } \end{aligned}$	M1   A1   A1   M1   A1   [5]	And attempt to square root   CAO   Correct use of sin rule from their diagram oe CAO   OR $\begin{array}{ll} 0.9+I \cos \theta=0.6 \times 3.4 \times 15 / 17 & \text { M1 } \\ I \sin \theta=0.6 \times 3.4 \times 8 / 17 & \text { M1 } \\ \text { square and add to find } I^{2} ; & \\ \text { or divide to find } \theta & \text { M1 } \\ I, \theta & \text { A1 A1 CAO } \end{array}$	Use of cos rule; condone + for - / missing 2 / missing ' 0.6 '; angle as ' $\theta$ ' for M1   Condone + for -   (1.3159)   Can be in terms of $I \alpha$ and $\theta$   (46.8476) (0.8176 rads)   Accept 46.7 from using $I=1.32$   Allow missing 0.6 and/or sign or trig error for these 2 marks, then M0A0A0
2	(i)	Vel unchanged perp to L o C $\begin{aligned} & 0.6 \sin 30^{\circ}=v \cos 30^{\circ} \\ & 0.2 \sqrt{ } 3\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1   M1   A1   [3]		Stated or used   Allow 1 sign or trig error (0.34641)
2	(ii)	Use momentum equation $\begin{aligned} & 0.3 m-0.6 m \cos 30^{\circ}=a m+0.2 \sqrt{ } 3 m \cos 60^{\circ} \\ & (a=) 0.393 \quad \text { to left } \end{aligned}$	M1   A1ft   A1   [3]	Follow through on $v$ Direction must be clearly stated or implied from working. WWW	Allow their $v$; allow sign errors / omission of $m$ m's not necessary; (0.39282)   Away from B/opp direction to before
2	(iii)	Use of NLR $\begin{aligned} & (0.2 \sqrt{ } 3) \cos 60^{\circ}-(-0.393)=e\left(0.6 \cos 30^{\circ}+\right. \\ & 0.3) \\ & 0.691 \end{aligned}$	M1   A1ft   A1   [3]	Ft on a and v CAO	Allow sign error and/or trig error $\text { (0.69082 or } 0.6905679 \text { ) }$

# physicsandmathstutor.com 

Answer			Marks   M1*   A1   *M1   A1   [4]	Guidance	
3	(i)	Use of $F=m a$, using $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ $0.3 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=1.5 x$   Attempt to rearrange and integrate $v=\sqrt{5} x \quad \text { AG }$		$0.3 v^{2}=1.5 x^{2}(+c)$   correct derivation WWW	Allow sign error / 0.3 omitted   No need for $c$. At least one side integrated correctly
3	(ii)	Integrate to find $x$ in terms of $t$ $\begin{aligned} & \ln x=\sqrt{ } 5 t+c \\ & x=\mathrm{e}^{\sqrt{5 t}} \\ & v=\sqrt{5} \mathrm{e}^{\sqrt{ } 5 t} \end{aligned}$   OR Integrate to find $v$ in terms of $t$ $\begin{aligned} & \frac{\mathrm{d} v}{v}=\sqrt{5 \mathrm{~d} t} \\ & \ln v=\sqrt{ } 5 t+c \\ & \ln v=\sqrt{ } 5 t+\ln (\sqrt{ } 5) \\ & v=\sqrt{ } 5 \mathrm{e}^{v 5} \end{aligned}$	M1   A1   A1   A1   [4]   M1   A1   A1   A1	$\mathrm{d} x / x=\sqrt{ } 5 \mathrm{~d} t$ and int 1 side correctly   CAO   Use jn $0.3 \frac{\mathrm{~d} v}{\mathrm{~d} t}=1.5 x$ and int 1 side correctly   CAO	Need to separate variables No need for c for first 2 marks Must include showing c $=0$.   No need for c for first 2 marks   Must include showing c $=\ln (\sqrt{ } 5)$


Answer			MarksM1M1A1M1A1M1*A1*M1A1[9]	Guidance	
4	(i)	Conservation of energy $\begin{aligned} & \frac{1}{2} 0.4 v^{2}+\frac{1}{2} 0.6 v^{2}+0.4 g a \sin \theta-0.6 g a \theta=0 \\ & v^{2}=3.92 a(3 \theta-2 \sin \theta) \\ & \mathrm{F}=\text { ma radially for } P \\ & 0.4 g \sin \theta-R=\frac{0.4 v^{2}}{a} \\ & R=-4.704 \theta+7.056 \sin \theta \end{aligned}$		Attempt to find $v^{2}$ dep both earlier M1s AG   Manipulation attempted, leading to $a \theta+b \sin \theta$	Need 4 terms; allow sign \& trig errors Both KE or both PE correct completely correct   Allow with sign and trig errors No errors Allow sign and trig errors   Allow sign and trig errors 2.352 $(-2 \theta+3 \sin \theta)$
4	(ii)	$\begin{aligned} & \text { Using } R=0 \\ & (\mathrm{k}=) \frac{2}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	$0=-4.704 \theta+7.056 \sin \theta$	Must be from correct expression in (i)
5	(i)	$\begin{aligned} & 2.5 g=36.75 e / 3 \\ & e=2 \\ & v^{2}=0^{2}+2 g(3+e) \\ & v=7 \sqrt{ } 2 \\ & 1 \times 3.5 \mathrm{~V} \\ & \text { Combined speed }=2 \sqrt{ } 2(\mathrm{~ms}-1) \end{aligned}$	M1   A1   M1   A1   M1   A1   [6]	$P$ in equilibrium   AG	Allow missing $g$   May be implied by $\mathrm{v}^{2}=98$   Convincing derivation, no errors

# physicsandmathstutor.com 

Answer			Marks	Guidance	
5	(ii)	change in PE is 3.5 gX   change in KE is $0.5 \times 3.5(2 \sqrt{ })^{2}$   change in EE is $36.75(X+2)^{2} /(2 \times 3)-36.75 \times 2^{2} /(2 \times 3)$   Use conservation of energy $35 X^{2}-56 X-80=0$	B1   B1   M1   A1   M1   A1   [6]	$\begin{aligned} & 34.3 X \\ & 14 \\ & \frac{36.75(X+2)^{2}}{2 \times 3}=\frac{36.75 \times 2^{2}}{2 \times 3}+3.5 g X+\frac{3.5}{2} V^{2} \end{aligned}$   AG	Allow sign errors / omission of 2;   Allow ' $x$ ' or ' $x+5$ ' for ' $x+2$ '; 2   terms or difference   Allow sign errors; at least PE, KE, EE term   Convincing derivation, no errors may see $36.75 X^{2}-58.8 X-84=0$
6	(i)	Moments about $C$ for $C D$   $W I \sqrt{ } 3 / 2\left(\cos 30^{\circ}\right)=Q I \sqrt{ } 3\left(\cos 30^{\circ}\right)$   ( $Q=$ ) W/2   Resolve vert $(R=) \frac{3}{2} W$	M1   A1   A1   M1   A1   [5]	AG   CAO	allow M if $\sin / \mathrm{cos}$ wrong
6	(ii)	$X=0$   Resolve vert for $C D$ or $A B$ $Y=W / 2$   Vertically downwards	B1   B1*   *B1   [3]	$Y+Q=W$ or $Y+W=R$	


Answer			Marks   M1	Guidance	
6	(iii)	Moments about $C$ for $A B$   $P l \cos 30^{\circ}+F l \cos 30^{\circ}=R l \sin 30^{\circ}$   Use $P$ in terms of $F$   Find $F$ in terms of $W$, or in terms of $R$ $\mu=(F / R)=\sqrt{ } 3 / 6$   OR Moments about $A$ for $A B$   $W l \sin 30^{\circ}+(Y) l \sin 30^{\circ}+F 2 l \cos 30^{\circ}=$ $R 2 l \sin 30^{\circ}$   Write $Y$ (and $X$ ) in terms of $W$   Find $F$ in terms of $W$, or in terms of $R$, oe $\mu=(F / R)=\sqrt{ } 3 / 6$	M1   A1   M1   M1   A1   [5]   M1   A1   M1   M1   A1	Correct   $F=P$ or other correct 2nd step $F=\frac{\sqrt{3}}{4} W$   Accept decimal answers from 0.288675 $F=\frac{\sqrt{3}}{4} W$   Accept decimal answers from 0.288675	Allow M if $\sin /$ cos wrong or sign errors; need all terms   Allow if missing term above Or getting 'their' $F$ oe, ie putting $F=$ $\mu R$ in moment equation.   Allow M if sin/cos wrong or sign errors; need all terms May have $X$ term if not 0 in (ii)
7	(i)	Use of energy equation $\begin{aligned} & 0.5 \mathrm{~m}(0.3)^{2}=m x 9.8 x 0.8 \mathrm{x}(1-\cos \theta) \\ & \theta=0.107 \end{aligned}$	M1   A1   A1   [3]	No errors AG	Allow M1 if sign error and/or 9.8 missing and/or missing $m$ or $l$ $0.107194171$
7	(ii)	Use $F=m a$ $\ddot{\theta}=-12.25 \theta$   small $\theta$   Use of $T=\frac{2 \pi}{\omega}$ $T=1.80$	M1   A1   B1   M1   A1   [5]	$m \times 9.8 \sin \theta=-m \times 0.8 \ddot{\theta}$   Dep on having seen acc $=k \sin \theta$ or sight of $\omega=3.5$	allow M1 if sign error, or 9.8 missing Allow fraction Rigorous $\text { accept } \frac{4 \pi}{7}(1.795195)$

# physicsandmathstutor.com 

Answer			Marks	Guidance	
7	(iii)	identifying amplitude as 0.107   Use of $(\dot{\theta})=0.107 \mathrm{x} 3.5 \mathrm{xcos}(3.5 t)$   Use of $\dot{\theta}=-0.25$   $t=0.658$   Use of $\theta=0.107 \sin (3.5 t)$ $(\theta=) 0.0797 \mathrm{rads}$	B1   M1   A1   A1   M1   A1   [6]	or $\sin (3.5 t+\varepsilon), \varepsilon$ not 0   Consistent angle or length   ft from velocity equation (matches, ignore sign)   accept $5.20^{\circ}$	ft from (i)   ft for a and $\omega$; allow sign error   (0.6576339)   (0.0796678 or 0.079576 )


Question		Answer		Guidance	
1		Use of $T=\frac{\lambda e}{l}$   Weight $=$ tension $1+$ tension 2 $(A W=) 1.5(\mathrm{~m})$	A1   M1   A1   A1   [5]	Attempt at one tension; allow use of $x$ $\begin{aligned} & \frac{20(d-0.4)}{0.4} \text { or } \frac{30(d-0.6)}{0.6} \\ & 100=50 d-20+50 d-30 \end{aligned}$	allow $2 l$ for M1   either term seen, accept in terms of $x$   condone Wg and $\mathrm{W} / \mathrm{g}$ fractions and brackets removed
2	(i)	Use of correct formula   Vert speed imm before bounce $=2.8\left(\mathrm{~ms}^{-1}\right)$   Time between bounces $=0.286(\mathrm{~s})(2 / 7)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	$v^{2}=0^{2}+2 \times 9.8 \times 0.4$	or by energy
2	(ii)	Use of their $t$ in a correct formula Vert speed imm after bounce $=1.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Coeff of rest $=0.5$	M1   A1   B1ft   [3]	$0=u+9.8 \times 0.5(t)$ Allow their value of $t$ Their values for $v$ after $/ v$ before	$\text { or }-u=u-9.8 t$   must be worked out to fraction or decimal; $0 \leq e \leq 1$
2	(iii)	Imp = change of mom $I=1.26(\mathrm{Ns})$	M1   A1   [2]	$I=0.3 \times(v)+0.3 \times(u)$ Allow their $u, v$ CAO	allow sign errors for M1, allow if answer implies use of their values
3	(i)	Use of $F=m a$   Integrate correctly $v=\frac{15}{4} t^{2}-5 t+0.8$	M1   A1   A1   [3]	$\begin{aligned} & \frac{3}{2} t-1=0.2 \frac{\mathrm{~d} v}{\mathrm{~d} t} \\ & v=\frac{15}{4} t^{2}-5 t(+c) \end{aligned}$	allow sign errors or $m$ omitted allow if $c$ missing or wrong oe


Question		Answer	Marks	Guidance	
3	(ii)	$\text { Use vel }=0.8$ $t=1.33(\mathrm{~s}) \text { or } 11 / 3(\mathrm{~s})$	M1   A1   [2]	$\frac{15}{4} t^{2}-5 t+0.8=0.8$   must come from correct equation for $v$	ft their (i)   Accept 4/3
3	(iii)	Integrate to find $x$ $x=\frac{15}{12} t^{3}-\frac{5}{2} t^{2}+0.8 t$   Solve for $x=0$ $t=1.6(\mathrm{~s}) \text { or } 0.4(\mathrm{~s})$	M1*   A1   *M1   A1   [4]	At least 2 terms with powers increased by 1 Need to state $c=0$, or use limits   Both answers needed; must be from correct work to find equation	Ignore $t=0$
3	(iv)	$x(3)-x(2)$   Distance is 12.05 (m)	M1   A1   [2]	Allow for $x(2)$ or $x(3)$ worked out from (iii)	13.65 or 1.6   Accept 12 or 12.1
4	(i)	Conservation of momentum   Newton's experimental law   Attempt to solve their 2 sim eqns   0.12 in same direction as before	$\begin{gathered} \text { *M1 }^{2} \\ \text { A1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { M1* } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	Must have 4 terms $0.1 \times 3+0.2 \times 1 \times \cos \theta=0.1 \times a+0.2 \times b$   Must have 4 terms and 0.8 $b-a=-0.8(1 \times \cos \theta-3)$   Dep both previous M marks   Direction may be implied by working	allow sign errors, $\cos \theta$ omitted $a$ and $b$ are vel components of $A$ and $B$ to right, respectively, after collision allow sign errors, $\cos \theta$ omitted   allow 1 slip   withhold if direction stated to left
4	(ii)	$b=2.04$   vel of $B$ perp to line of centres $=0.8$   Direction of $B$ after collision makes angle $21.4^{\circ}$ with line of centres   Angle turned through by $B$ is $31.7^{\circ}$	$\begin{gathered} \mathrm{B} 1 \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { A1ft } \\ {[5]} \end{gathered}$	$\begin{aligned} & \text { Must be seen/used in (ii) } \\ & (1 \times \sin \theta) \\ & \tan \varphi=0.8 / 2.04 \text {; } \\ & \text { or } 0.374 \text { rads } \\ & \text { or } 0.554 \text { rads; allow }+/- \end{aligned}$	Allow with their 0.8 and 2.04 ( $b$ from (i)); allow $\tan \varphi=2.04 / 0.8$, if angle clear, leading to $68.4^{\circ}$ for A1 $53.1(3)-\varphi, 0.927-0.374 \text { rads }$


Question		Answer	Marks	Guidance	
5	(i)	Use of energy equation at $A$ and $B$   $F=m a$ radially   Use of $R=0$   $\cos T O B=\frac{\sqrt{3}}{3} \quad A G$	M1   A1   M1   A1   M1   A1   [6]	3 terms needed $m g 0.6 \cos \frac{\pi}{6}=m g 0.6 \cos \theta+\frac{1}{2} m v^{2}$ $m g \cos \theta-R=\frac{m v^{2}}{0.6}$   May be incorporated in previous step Completely correct	allow sign error, missing $m / g / r$   allow if $\theta$ replaced by $\varphi+\pi / 6$ allow sign error, missing $m / g$   not given if decimals used for angle.
5	(ii)	Use of $\sqrt{3} / 3$ in 'correct' equation in (i) $1.84\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1   A1   [2]	$\begin{aligned} & m g 0.6 \cos \frac{\pi}{6}=m g 0.6 \times \frac{\sqrt{3}}{3}+\frac{1}{2} m v^{2} \\ & \text { or } m g \frac{\sqrt{3}}{3}=\frac{m v^{2}}{0.6} \end{aligned}$	equation must have gained M1 in (i) but allow restart here
5	(iii)	Use of $F=m a$ tangentially $8.00\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	M1   A1   [2]	$m g \sin \theta=m a$ seen	allow missing $m / g$, - sign; allow M1 if angular accel found
6	(i)	Moments about $B$ for equilibrium of $B C$ $W+\sqrt{3} F=R \quad \mathrm{AG}$	M1   A1   [2]	$2 W l \cos 60^{\circ}+F 2 l \sin 60^{\circ}=R 2 l \cos 60^{\circ}$   Must be formula for $R$	3 moment terms, condone sin/cos errors and missing $l$. Need trig terms for M1 correct, with sin/cos evaluated


Question		Answer   Moments about A for equilibrium of whole   system	Marks   M1	Guidance	
6	(ii)	Moments about A for equilibrium of whole system $W\left(\frac{5 \sqrt{3}}{2}+1\right)+F(\sqrt{3}+1)=R(\sqrt{3}+1)$	M1   A1   A1   A1   [4]	At least one of $F$ and $R$ terms must involve lengths of both rods $\begin{aligned} & W l \cos 30+2 W(2 l \cos 30+l \cos 60)+ \\ & F(2 l \sin 60+2 l \sin 30)=R(2 l \cos 30+2 l \cos 60) \end{aligned}$   sin/cos left in, but correct   fully correct, oe. Mark final answer   Allow full credit for candidates who work out internal forces at B and work correctly from there.	At least 3 moment terms, condone $\sin /$ cos errors, sign errors and $l / 2 l$ confusion/missing. Wrong use of forces at $B$ gets M0   4 terms, accept sin/cos errors and $l / 2 l$ confusion/missing and sign errors for A1   accept $5.33 W+2.73 F=2.73 R$,   $W\left(\frac{13}{4}-\frac{3 \sqrt{3}}{4}\right)+F=R$   $\operatorname{Eg} 3 R=\sqrt{3} F+7.5 W$
6	(iii)	Solving 2 sim equations to eliminate $F$ or $R$   Use $F=\mu R$ to find $\mu$ $(\mu=) \frac{3 \sqrt{3}}{13} \quad(0.39970)$	M1   A1   A1   M1   A1   [5]	Both equations must involve $W, F$ and $R$ $\begin{aligned} & F=\frac{3 \sqrt{3}}{4} W \\ & R=\frac{13}{4} W \end{aligned}$   At any point   Or eliminate $W$ M1A1A1   Use $F=\mu R \quad$ M1   cao A1	allow slips in working $F=1.299 \mathrm{~W}$ $R=3.25 W$   Accept 0.4 if with correct working $\begin{aligned} & 5.33(R-1.73 F)+2.73 F=2.73 R \\ & 2.6 R=6.52 F \end{aligned}$


Question		Answer	Marks   M1	Guidance	
7	(i)	Use of $F=m a$ when string stretched   Show $x=1$ is centre of SHM or that $x=1$ is equilibrium position.	M1   A1   B1   [3]	Must have $m g$ - tension term (involving $39.2 m, 0.8$ and $x)=m a$ $m g-\frac{39.2 m(x-0.8)}{0.8}=m \ddot{x}$ $\ddot{x}=-49(x-1)$   and state about $x=1$	allow if sign errors; $x$ could be length or ext of string, or from eq ${ }^{\mathrm{m}}$ pos.   $m g-\frac{39.2 m x}{0.8}=m \ddot{x}$ leads to $\ddot{x}=-49(x-0.2)$   $m g-\frac{39.2(x+0.2)}{0.8}=m \ddot{x}$ leads to $\ddot{x}=-49 x$   Convincingly
7	(ii)	By energy   $e=0.8$ satisfies this equation AG	M1   A1   A1   [3]	Must be PE term and EE term $m g(0.8+e)=\frac{39.2 m e^{2}}{2 \times 0.8}$   Or by solving quadratic in $e$   Allow full credit if done correctly from $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$	Allow for missing ' 2 ', wrong ' $g$ ' or inconsistent lengths   Or $m g h=\frac{39.2 m(h-0.8)^{2}}{2 \times 0.8}$ and $\begin{aligned} & h=0.8+e \\ & 2.5 e^{2}-e-0.8=0 \end{aligned}$   Convincingly   Allow integration of $v \frac{\mathrm{~d} v}{\mathrm{~d} x}=g-49 x$


Question		Answer	Marks   B1	Guidance	
7	(iii)	For SHM, $\omega=7$ $a=0.6$   Correct use of appropriate SHM distance equation   $t=0.272$ (9476) from bottom ( $x=1.6$ ) to $x=0.8$   $t=0.404(061)$ from $O$ to $x=0.8$   Time to reach lowest point $=0.677 \mathrm{~s}$	B1   B1   M1   A1   B1   A1ft   [6]	$\begin{aligned} & -0.2=0.6 \cos (7 t) \text { or }-0.2=0.6 \sin (7 \mathrm{t}) \\ & \text { Could be } 0.0485+0.224 \\ & \text { Or } \frac{2 \sqrt{2}}{7} \\ & \left({ }^{\prime} 0.273 \prime+\text { ' } 0.404^{\prime}\right) \end{aligned}$	To be awarded if seen in (i) or (iv) or seen or used here Allow +0.2 , allow their $a$ and $\omega$   May be seen first
7	(iv)	Use of $v=-a \omega \sin \omega t$ or $a \omega \cos \omega t$ $v=-0.6 \times 7 \sin 7 t$   Use of $t=0.8-0.677=0.123$ after bottom point $v=3.19 \quad(3.185677 \ldots)$	M1   A1   B1ft   A1   [4]	Must ft from their ' $x$ ' equation in (iii), or shown here   or $0.6 \times 7 \cos 7 t$   Or use of $t=0.3475$ in 'cos' version $(-) 3.187$	Allow use of their $a$ and $\omega$, sign error   Must be between 0 and 0.8   Do not allow if direction stated to be down.


Answer			Marks   M1   A1   A1 [3]	Guidance	
1	(i)	realising impulse must be in same direction as velocity, or opposite max speed $2.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ min speed $1.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$		$\begin{array}{r} 0.8+/-0.6 / 0.3 \\ -1.2 \text { is wrong } \\ \hline \end{array}$	various methods
	(ii)	Impulse momentum diagram $\cos \theta=\frac{0.6^{2}+0.24^{2}-0.75^{2}}{2 \times 0.6 \times 0.24}$ $\theta=120^{\circ}(2.098 \mathrm{rad})$   angle shown correctly	M1   A1   M1 A1 [4]	Triangle with sides labelled $0.24,0.6$ and 0.75 or $0.8,2$ and 2.5   accept $59.8^{\circ}$ (1.04 rad)   consistent with their $\theta$; dep M1A1M1	Allow M1 if positions wrong.   Diagram must be correct.   $v_{x}=0.8+2 \cos \theta \quad$ M1 either   $v_{y}=2 \sin \theta$ and correct diag A1 both   Square, add, giving $1.61=3.2 \cos \theta \mathrm{M} 1$ 120.(21)...A1
2	(i)	By energy $\begin{aligned} & \frac{30(d-0.6)^{2}}{2 \times 0.6}=48 \times d \\ & 25 d^{2}-78 d+9=0 \\ & \text { or } 30 d^{2}-93.6 d+10.8=0 \\ & (d=) 3(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { *M1 } \\ & \text { A1 [4] } \end{aligned}$	Attempt at elastic energy   get 3 term quadratic and attempt to solve ignore $d=0.12$, unless given as answer	Allow M1 for $\frac{30 y^{2}}{(2) \times 0.6}=k d$ $\frac{30 x^{2}}{2 \times 0.6}=48(x+0.6)$   allow 1 slip or $25 x^{2}-48 x-28.8=0$ $(x=) 2.4 \text { leading to }(d=) 3$
	(ii)	Use $F=m a$ $\begin{aligned} & 48-\frac{30 \times(3-0.6-1.3)}{0.6}=( \pm) \frac{48}{g} a \\ & (a=)(+/-) 1.43 \end{aligned}$   upwards	M1   A1ft   A1   A1 [4]	ft their ' 3 ' $1.4291666$   depends on $a$ being right	allow missing $g$, allow 1.3 or 0.6 to be omitted   Using energy: $a=v \frac{d v}{d x}=\frac{9}{4 s}(50 x-72) \text { M1A1 }$


Answer			MarksM1A1M1A1A1 [5]	Guidance	
3	(i)	Using conservation of momentum along loc $0.1 \times 2.8+0.4 \times 1 \times 0.8=0.4 \times b$   Using NEL $\begin{aligned} & b-0=-e(1 \times 0.8-2.8) \\ & e=0.75 \end{aligned}$		3 (or 4) terms, correct dimensions   Vel diff after $=\mathrm{e} \mathrm{x}$ vel diff before	Allow sign errors, (sin/cos) may see $b=1.5$ Allow $\pm e$
	(ii)	$\begin{aligned} & b(\text { perp })=0.6 \\ & \tan \beta=\frac{b(\text { perp })}{\text { their } 1.5}, \end{aligned}$   angle turned through is $36.9^{\circ}-\beta$ $=15.1^{\circ}(0.262 \mathrm{rad})$	B1   M1*   *M1   A1 [4]	$\beta=21.8^{\circ} ;$ ft 1.5 from (i)   Must be $36.9^{\circ}$ - their $\beta$ (soi)	May be on diagram   21.8014...(0.381 rad)   36.86989   15.068 scB 1 for $165^{\circ}$ after B1M1
4	(i)	$\begin{aligned} & \text { Use } F=m v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & -4 v=\frac{\mathrm{d} v}{\mathrm{~d} x} \\ & -4 x=\ln v+c \\ & 0=\ln 2+c \\ & \ln \frac{v}{2}=-4 x \\ & v=2 \mathrm{e}^{-4 x} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 [5] } \end{aligned}$	expression for $\frac{\mathrm{d} v}{\mathrm{~d} x}$ required   get $(+/-) A x=\ln v+c$   valid attempt to find $c$   need a step leading to given answer   AG	Allow sign error, missing m or g inc
	(ii)	$\begin{aligned} & \mathrm{e}^{4 x} d x=2 d t \\ & \frac{1}{4} \mathrm{e}^{4 x}=2 t+c \\ & \frac{1}{4}=0+\mathrm{c} \\ & \mathrm{e}^{4 x}=4\left(1+\frac{1}{4}\right) \\ & x=\frac{1}{4} \ln 5 \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { *M1 } \\ & \text { *M1 } \\ & \text { A1 [5] } \end{aligned}$	Write v as $\frac{\mathrm{d} x}{\mathrm{dt}}$ and separate variables must have $c$ or use limits valid attempt to find $c$ or subst limits find $x$ when $t=0.5$ - need to remove exp; allow even if no $c$ Accept 0.402(359...)	$\begin{aligned} & \mathrm{d} v / 4 v^{2}=-\mathrm{d} t \\ & \frac{1}{\mathrm{~d}}=4 t+\frac{1}{2} \\ & \frac{\mathrm{~d} x}{\mathrm{dt}}=\frac{2}{8 t+1} \quad \text { OR } \mathrm{t}=0.5 \text { gives } \mathrm{v}=0.4 \\ & x=\frac{1}{4} \ln (8 t+1)+c \quad \text { OR }-4 x=\ln 0.2 \\ & x=\frac{1}{4} \ln 5 \end{aligned}$
5	(i)	Take moments about $A$ for whole body $\begin{aligned} & W \times 2 L \cos 60^{\circ}+2 W \times 6 L \cos 60^{\circ}=R \times 8 L \cos 60^{\circ} \\ & R=1.75 W \\ & S=1.25 W \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 [4] } \end{aligned}$	Correct 3 terms needed; dim correct $\cos 60^{\circ}$ may be omitted at least 1 correct step to show given answer	Allow sign errors, $W / 2 W, \cos /$ sin, $R$ is reaction at $C$ $S$ is reaction at $A$ For less efficient methods, M1 can only be earned when equation with one unknown, $R$, is reached.


Answer			Marks	Guidance	
	(ii)	Take moments about $B$ for equil of $B C$ $\begin{aligned} & T \mathrm{x} L \sin 60^{\circ}+2 W \mathrm{x} 2 L \cos 60^{\circ}= \\ & 1.75 W \mathrm{x} 4 L \cos 60^{\circ} \end{aligned}$   solve to get $T=\sqrt{3} W$	$\begin{aligned} & \text { M1* } \\ & \\ & \text { A1 } \\ & \text { *M1 } \\ & \text { A1 [4] } \end{aligned}$	Correct 3 resolved terms needed; dim correct; or for $B A$ $T \mathrm{x} L \sin 60^{\circ}+W \mathrm{x} 2 L \cos 60^{\circ}=$ $1.25 W \mathrm{x} 4 L \cos 60^{\circ}$ accept $T=1.73 \mathrm{~W}$	allow sign errors, $W / 2 W$, $\cos / \mathrm{sin}$,
	(iii)	Resolve vertically for $A B$ $Y+1.25 W-W=0$   $Y=0.25 \mathrm{~W}$, downwards $X=\sqrt{3} W \text { to left }$	M1   A1CAO   B1ft [3]	direction must be clear direction must be clear	Weight and normal term must be for same rod
6	(i)	$\begin{aligned} & \frac{1}{2} m v^{2}=m g \times 0.8\left(1-\sin 30^{\circ}\right) \\ & v=2.8 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$   Speed of P and Q equal   Use conservation of momentum   $5 m \times 2.8-m \times 2.8=5 m q+m p$   Use of NEL $\begin{aligned} & p-q=-0.95(-2.8-2.8) \\ & p=6.3 \mathrm{~m} \mathrm{~s}^{-1} \\ & q=0.98 \mathrm{~m} \mathrm{~s}^{-1} \quad Q \text { moves to left } \end{aligned}$	M1   A1   B1ft   B1ft   M1   A1ft   A1   A1 [8]	Or with ' $5 m$ ' if for $Q$   soi   Ft on velocity   Ft on velocity supporting work required forAG direction must be clear	allow $g$ missing for M1.   Might see $v^{2}=0.8 g$   $p$ is vel of $P, q$ is vel of $Q$, both to left Allow $\pm e$
	(ii)	By energy for $P$ at top $\begin{aligned} & \frac{1}{2} m 6.3^{2}=\frac{1}{2} m v^{2}+m g \times 1.6 \\ & v^{2}=8.33 \end{aligned}$   Use $F=m a$ at top $\begin{aligned} & m g+R=m \times \frac{8.33}{0.8} \\ & R=0.6125 m \end{aligned}$	M1   A1   A1   M1   A1ft   A1CAO   [6]	must have 3 terms   Soi   must have 3 terms their $v^{2}$   Or 49m/80	allow $g$ missing, sign error   allow $g$ missing, sign error


Answer			Marks	Guidance	
7	(i)	$\begin{aligned} & m g \times 0.2=\frac{2.45 m \times e}{0.3} \\ & e=0.24 \end{aligned}$	M1   A1 [2]	No errors; must show all numbers	allow sin/cos, wrong sign, missing g
	(ii)	Use $F=m a$ down slope $\begin{aligned} & m g \sin \alpha-\frac{2.45 m(x-0.3)}{0.3}=m \ddot{x} \\ & \ddot{x}=-\frac{49}{6}(x-0.54) \\ & \text { SHM (about } x=0.54) \\ & \omega=7 / \sqrt{ } 6 \quad(2.8577) \\ & T=2.20 \\ & a=0.105 \mathrm{~m} \quad(0.1049795) \end{aligned}$	M1   A1   A1   B1   B1CAO   B1ft [6]	3 terms needed oe Accept 2.45/0.3 for $\omega^{2}$   Dep M1A1. Must be in correct form, and $\omega^{2}$ in simplified form   Soi   AG Need to see $2 \pi / \omega$ oe   ft their $\omega \frac{3 \sqrt{6}}{70}$	Allow sign error, $\sin /$ cos, missing $g$ or m   Could use $x$ in place of $x-0.3$, leading to $\frac{B}{\bar{x}}=-\frac{49}{6}(x-0.24)($ about $x=0.24)$ Or $x+0.24$ in place of $x-0.3$ leading to $\ddot{x}=-\frac{49}{6} x \quad($ about $x=0)$   May see $\omega^{2}=8 \frac{1}{6}$   2.1986568...   NB Can find $a$ by energy, leading to $\omega$ and $T$
	(iii)	Use of SHM eqn for distance $x=-0.0956(227 \ldots)$   Dist from $O$ is $0.444(377 \ldots$...) (m) Use of SHM equation for velocity $v=-0.124 \quad(-0.123949 \ldots)$	M1   A1ft   A1CAO   M1   A1 [5]	$x=a \sin \omega t$   Their $a$ $v=a \omega \cos \omega t$   must be clear velocity is towards O	Allow M1 for $\mathrm{x}=a \cos \omega t$ Or -0.9553 or -0.09577   Allow M1 for $v=-a \omega \sin \omega t$ if consistent with $x$ eqn for $\sin / \cos , a, \omega$ Use of $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ will not gain A1 unless direction is established

