1	$\pm (5.4\cos 45^{\circ} - 8.7)$	M1		For attempting to find Δv in i dir'n
	7 0 101/7 1 170 0 7	M1		For using $I = m(\Delta v)$ in i direction
	$I\cos\theta = \pm 0.4(5.4\cos 45^{\circ} - 8.7)$	A 1		$(= \mp 1.953)$
	$I\sin\theta = 0.4x5.4\sin45$	B1		(=1.527)
	$I = \sqrt{(1.527^2 + 1.953^2)} \text{ or } \theta = \tan^{-1}[1.527/(-1.953)]$	M1		For using Pythagoras or trig.
	Magnitude is 2.48 kgms ⁻¹	A 1		
	Direction is 142° to original dir'n.	A1	[7]	Accept $\theta = 38.0^{\circ}$ with θ shown appropriately
OR		M1		For using Impulse = mass x Δv
		M1		For appropriate use of cosine rule
	$I = 0.4 (5.4^2 + 8.7^2 -$			TT T
		A 1		
	$2x5.4x8.7\cos 45^{\circ}$) ^{1/2}			
	Magnitude is 2.48 kgms ⁻¹	A 1		
	-	M1		For appropriate use of sine rule
	$\sin \theta / 5.4 = \sin 45^{\circ} / 6.1976$	A 1		
	$\theta = 38.0^{\circ}$	A1		

2	(i)	M1		For correct use of Newton's 2 nd law
	$0.5 dv/dt = 1 + kt^2$	A1		
	$v = 2t + 2kt^3/3$	A 1	[3]	
				SR(max 1/3) for omission of mass but
				otherwise correct
				$v = t + kt^3/3$
				B1
	(ii) $x = t^2 + kt^4/6$	M1		For integration w.r.t. t
	2 = 1 + k/6	M1		For substitution and attempting to solve
				for k
	k = 6	A1		
		M1		For attempting to solve quadratic in t ² for
				t
	t=2	A 1	[5]	With no extra solutions

3	(i)	M1	For use of EE formula
	$EE = \lambda x (5-3)^2 / (2 x 3)$	A1	
	$2 \lambda / 3 = 1.6 \times 9.8 \times 5$	M1	For equating EE and PE
	$\lambda = 117.6 \text{ N}$	A1 [4]	AG
	(ii)	M1	For use of conservation of energy
	$0.5x1.6v^2 = 1.6x9.8x4.5$	A2,1,0	-1 each error
	$ 117.6x1.5^{2}/(2x3) $ v = 5.75 ms ⁻¹		
	$v = 5.75 \text{ ms}^{-1}$	A1 [4]	

4	Perp. vel. of A after impact = 4	B1		
		M1		For using cons'n of m'm'tum // l.o.c
	[5x0] - 2x4 = 5a + 2b	A1		-
		M1		Using N.E.L. // l.o.c.
	$0.75 \times 4 = b-a$	A1		
		M1		For solving sim. equ.
	Speed of B is 1ms ⁻¹ ; direction			
	//l.o.c. and to the right	A1		
	$v_A = \sqrt{(4^2 + (-2)^2)}$	M1		For method of finding the speed of A
	tan(angle) = 4/2	M1		For method of finding the direction of A
	Speed of A is 4.47 ms ⁻¹ ;			
	direction is 63.4° to l.o.c. and to	A1	[10	
	the left]	

5	(i)	M1	For any moment equ. that includes F and
			all other relevant forces
	1.8F = 0.9x40 + 1.4x9	A2,1,0	-1 each error
	Magnitude is 27 N	A1 [4]	AG
	(ii) Vertical comp. is 22 N		
	downwards	B1	
		M1	For any moment equ. that includes X and all other relevant forces
	1.2X = (40+9-27)x(3.8-1.8) + 64	A2,1,0 ft	-1 each error.
	x1(1.2X = 44 + 64)		ft wrong vert. comp.
	Horizontal comp. is 90 N to the	A1 [5]	•
	left		
	(iii) $\mu = 27/[90]$	M1	For use of $\mu = F/R$
	Coefficient of friction is 0.3	A1 [2] ft	ft wrong answer in (ii)

6	(i)	M1		For use of conservation of energy
	$0.5x0.3v^2 - 0.5x0.3x2^2 =$			
	$0.3x9.8x0.5\cos 60 -$			
		A2,1,	0	-1 each error
	0.3 x 9.8 x 0.5 cos θ			
	$v^2 = 8.9 - 9.8\cos\theta$	A1	[4]	AG
	(ii)	M1		For using Newton's 2 nd law radially
	$T + 0.3x9.8\cos\theta = 0.3v^2/0.5$	A1		
	$T + 2.94\cos\theta =$	M1		For correct substitution for v ²
	$0.6(8.9 - 9.8\cos\theta)$			
	Tension is(5.34 - $8.82\cos\theta$)N	A 1	[4]	Accept any correct form
	(iii)	M1		For using $T = 0$
	Basic value $\theta = 52.7^{\circ}$	A1 ft		ft any T of the form a - b $\cos \theta$
	Angle = $(360-52.7) - 60$	M1		
	Angle turned through is 247°	A1	[4]	

7	(i)	M1		For using $T = \lambda e/L$ once
	For 180e/1 or 360(0.8-e)/1.2 or			
	$T_A = 180 \times 0.5/1 \text{ or}$			
	$T_B = 360 \text{ x}$	A1		
	0.3/1.2			
	$480e = 240 \text{ or } T_A = 90, T_B = 90$	M1		For using $T_A(e) = T_B(e)$ or attempting to show $T_A = T_B$ when $BQ = 1.5$
	$BQ = 1 + 0.5 = 1.5 \text{ m or } T_A = T_B$	A1	[4]	AG
	(ii) $T_B = 360(0.3 - x)/1.2$	B1		
	$T_A = 180(0.5 + x)$	B1		
	$1.2d^2x/dt^2 =$	M1		For using Newton's 2 nd
	300(0.3-x) - 180(0.5+x)			law
	$d^2x/dt^2 = -400x$	A1		
	Period is $2\pi / \sqrt{[400]} = 0.314 \text{ s}$	A1	[5]	AG
	(iii)	M1		For using $T_B = 0$
	Max amplitude = $1.5 - 1.2 = 0.3$	A1		
	m			
	amplitude = $u/\sqrt{400}$ or	M1		For using Amp. = u/ω or 'energy at
	$180 \times 0.5^2 / (2 \times 1) +$			equil. pos'n = energy at max. displ.'
	$360 \times 0.3^2 / (2 \times 1.2)$			
	$+\frac{1}{2}1.2u_{\text{max}}^{2} =$			
	$180 \times 0.8^{2} / (2 \times 1)$			
	Maximum value of u is 6	A1	[4]	AG
	(iv) $-0.2 = 0.3\sin 20t$	M1		For relevant trig. equation
	20t = 0.7297 + 3.142	M1		For method of obtaining relevant solution
	Time taken is 0.194s	A1	[3]	Ç

1	(i)		M1		For using $I = \Delta$ (mv) in the direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\cos\theta = 0.4x25$	A1		
		Direction at angle 120° to original motion	A1	3	Accept $\theta = 60^{\circ}$ with θ correctly identified.
	(ii)		M1		For using $I = \Delta$ (mv) perp. to direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\sin 60^{\circ} = 0.4v$	A1ft		
		Speed is 43.3 ms ⁻¹	A1	3	
2			M1		For applying Newton's 2 nd Law.
		$2v(dv/dx) = -(2v + 3v^2)$	M1 A1		For using $a = v(dv/dx)$.
			M1		For separating variables and attempting to integrate.
		$2/3\ln(2 + 3v) = -x$ (+C)	A1ft		ft absence of minus sign,
		$[2/3\ln 14 = C]$	M1		For using $v(0) = 4$.
		$[2/3\ln 2 = -x + 2/3\ln 14]$	M1		For attempting to solve $v(x)$ = 0 for x.
		Comes to rest after travelling 1.30m	A1	8	AG

3	(i)		M1		For taking moments about C for the whole structure.
		1.4R = 0.35x360 + 1.05x200	A1		
		Magnitude is 240N	A1		AG
			M1		For taking moments about A for the rod AB.
		0.7x240 = 0.35x200 + 1.05T	A1		
		Tension is 93.3N	A1	6	
	OR (i)		M1		For taking moments about
		$0.7R_B = 70 + 1.05T$ and $0.7R_C = 126 +$	A1		A for AB and AC.
		1.05T			
			M1		For eliminating T or for adding the equations, and then using $R_B + R_C = 560$.
		$0.7(560 - R_B) - 0.7R_B = 126 -$ 70 or 0.7x560 = 70 + 126 +	A1		For a correct equation in R _B only or T only
		2.1T			
		Magnitude is 240N	A1		AG
		Tension is 93.3N	A1	6	
	(ii)	Horizontal component is 93.3 N to the left	B1ft		
		Y = 240 - 200	M1		For resolving forces vertically.
		Vertical component is 40 N downwards	A1	3	,

4	(i)		M1		For using Newton's 2 nd Law
-	\-' <i>I</i>				perp. to string with $a = L\ddot{\theta}$.
		L(m) $\ddot{\theta}$ = -(m)gsin θ or (m) \ddot{s} = -	A1		
		(m)gsin(s/L)			
		$\ddot{\theta} \approx -k\theta$ or $\ddot{s} = -ks$ [and motion is therefore approx. simple harmonic]	B1		
		Hamonioj	M1		For using T = $2\pi/n$ and k = w^2 or T = $2\pi\sqrt{L/g}$ for
					simple pendulum.
		Period is 3.14s.	A1	5	AG
	(ii)		M1		For using
					$\dot{\theta}^2 = n^2(\theta_0^2 - \theta^2) \text{ or the}$
					principle of conservation of energy
		$\dot{\theta}^2 = 4(0.1^2 - 0.06^2)$ or	A1		
		$\frac{1}{2} \text{ m}(2.45 \dot{\theta})^2 =$			
		2.45mg(cos0.06 – cos0.1)			
		Angular speed is 0.16 rad s ⁻¹ .	A1	3	(0.1599 from energy method)
	OR	(in the case for which (iii) is attempted before (ii))			
	(ii)	$[\dot{ heta}$ = -0.2sin2t]	M1		For using $\dot{\theta}$ = d(Acos nt)/dt
		$\dot{\theta}$ = -0.2sin(2x0.464)	A1ft		
		Angular speed is 0.16 rad s ⁻¹ .	A1	3	
	(iii)		M1		For using θ = Acos nt or Asin(π /2 – nt) or for using
		$0.06 = 0.1\cos 2t \text{ or } 0.1\sin(\pi/2 - 2t)$	A1ft		θ = Asin nt and T = $t_{0.1} - t_{0.06}$ ft angular displacement of 0.04 instead of 0.06
		or $2T = \pi/2 -$			
		sin ⁻¹ 0.6 Time taken is 0.464s	A1	3	
		THIS LUNCTION OF TO TO	711		

		_	N / 4		
5			M1		Σ mv conserved in i direction.
		$2x12\cos 60^{\circ} - 3x8 = 2a + 3b$	A1		
			M1		For using NEL
		For LHS of equation below	A1		
		$0.5(12\cos 60^{\circ} + 8) = b - a$	A1		Complete equation with
		(signs of a and b consistent with previous equation.
			M1		For eliminating a or b.
		Speed of B is 0.4ms ⁻¹ in i direction	A1		
		a = -6.6	A1		
		Component of A's velocity in j direction is	B1		May be shown on diagram or implied in subsequent
		12sin60°			work.
		Speed of A is 12.3ms ⁻¹	B1ft		
		•	M1		For using
					$\theta = \tan^{-1}(\mathbf{j}\text{comp}/\pm \mathbf{i} \text{ comp})$
		Direction is at 122.4° to the i	A1ft	1	Accept $\theta = 57.6^{\circ}$ with
		direction		2	θ correctly identified.
6	(i)	T = 1470x/30	B1		
		[49x = 70x9.8]	M1		For using T = mg
		x = 14	A1		
		Distance fallen is 44m	A1ft	4	
	(ii)	PE loss = $70g(30 + 14)$	B1ft		
		EE gain = $1470x14^2/(2x30)$	B1ft		
		$[\frac{1}{2} 70 v^2 = 30184 - 4802]$	M1		For a linear equation with terms representing KE, PE
		Speed is 26 0ms ⁻¹	۸ 1	1	and EE changes. AG
	○ □	Speed is 26.9ms ⁻¹	A1	4	AG
	OR (ii)	$[0.5 \text{ v}^2 = 14\text{g} - 68.6 + 30\text{g}]$	M1		For using Newton's 2 nd law
	(ii)	[0.5 v = 14y - 66.6 + 50y]	IVI I		(vdv/dx = $g - 0.7x$), integrating (0.5 $v^2 = gx - 0.35x^2 + k$), using $v(0)^2 = 60g \rightarrow k = 30g$, and substituting $x = 14$.
		For 14g + 30g	B1ft		Ŭ
		For ∓68.6	B1ft		Accept in unsimplified form.
		Speed is 26.9ms ⁻¹	A1	4	AG
	(iii)	PE loss = 70g(30 + x)	B1ft		
	. •	EE gain = $1470x^2/(2x30)$	B1ft		
		$[x^2 - 28x - 840 = 0]$	M1		For using PE loss = KE
					gain to obtain a 3 term
					quadratic equation.
		Extension is 46.2m	A1	4	
	OR (iii)		M1		For identifying SHM with n ² =
					1470/(70x30)
			M1		For using $v_{max} = An$
		$A = 26.9 / \sqrt{0.7}$	A1		J max
		•		1	
		Extension is 46.2m	A1	4	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		413	4/ 0 0 2 4/ 0 4 2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	(i)	$\frac{1}{2} 0.3 v^2 + \frac{1}{2} 0.4 v^2$	B1		
			· · · · · · · · · · · · · · · · · · ·			
conservation of energy. AG (ii) M1 For applying Newton's 2^{nd} Law radially to P and using $a = v^2/r$ 0.3($v^2/0.6$) = 0.3gsin θ - R A1 [v_2 (6.72 θ - 5.04sin θ) = M1 For substituting for v^2 . 0.3gsin θ - R] Magnitude is (5.46sin θ - A1 AG 3.36 θ) N [5.46cos θ - 3.36 = 0] M1 For using $dR/d\theta = 0$ Value of θ is 0.908 A1 6 (iii) [T - 0.3gcos θ = 0.3a] M1 For applying Newton's 2^{nd} Law tangentially to P For applying Newton's 2^{nd} Law tangentially to P For applying Newton's 2^{nd} Law tangentially to P For applying Newton's 2^{nd} Law to Q [If 0.4g - 0.3gcos θ = 0.3a is seen, assume this derives from T - 0.3gcos θ = 0.3a M1 and T = 0.4g M0] Component is $5.6 - 4.2\cos\theta$ A1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For using $v(dv/d\theta) = ar$			\pm 0.4g(0.6 $ heta$)	B1		
$v^2 = 6.72 \theta - 5.04 \sin \theta \qquad A1 \qquad 5 \qquad AG$ (ii) $M1 \qquad For applying Newton's 2^{nd} Law radially to P and using a = v^2/r 0.3(v^2/0.6) = 0.3 g \sin \theta - R \qquad A1 [\frac{1}{2} (6.72 \theta - 5.04 \sin \theta) = \qquad M1 \qquad For substituting for v^2. 0.3 g \sin \theta - R] \qquad A1 \qquad AG 3.36 \theta) N \qquad [5.46 \cos \theta - 3.36 = 0] \qquad M1 \qquad For using dR/d \theta = 0 Value of \theta is 0.908 \qquad A1 \qquad 6 (iii) [T - 0.3 g \cos \theta = 0.3a] \qquad M1 \qquad For applying Newton's 2^{nd} Law tangentially to P \qquad For applying Newton's 2^{nd} Law to Q \qquad [If 0.4g - 0.3 g \cos \theta = 0.3a] is seen, assume this derives from T - 0.3 g \cos \theta = 0.3a M1 \qquad And T = 0.4g M0] Component is 5.6 - 4.2 \cos \theta \qquad A1 \qquad 3 OR (iii) [2v(dv/d \theta) = 6.72 - 5.04 \cos \theta] \qquad M1 \qquad For differentiating v^2 (from (i)) w.r.t. \theta 2 (0.6a) = 6.72 - 5.04 \cos \theta \qquad M1 \qquad For using v(dv/d \theta) = ar$			$[0.35v^2 = 2.352\theta - 1.764\sin\theta]$	M1		For using the principle of
(ii) M1 For applying Newton's 2^{nd} Law radially to P and using $a = v^2/r$ $0.3(v^2/0.6) = 0.3gsin \theta - R$ A1 $[\frac{1}{2}(6.72\theta - 5.04sin \theta) = M1$ For substituting for v^2 . $0.3gsin \theta - R]$ Magnitude is $(5.46sin \theta - A1 AG 3.36\theta)N$ $[5.46cos \theta - 3.36 = 0]$ M1 For using $dR/d\theta = 0$ Value of θ is 0.908 A1 6 (iii) $[T - 0.3gcos \theta = 0.3a]$ M1 For applying Newton's 2^{nd} Law tangentially to P For applying Newton's 2^{nd} Law to Q [If $0.4g - 0.3gcos \theta = 0.3a$ is seen, assume this derives from $T - 0.3gcos \theta = 0.3a$ M1 and $T = 0.4g$ M0] Component is $5.6 - 4.2cos \theta$ A1 3 OR (iii) $0.4g - 0.3gcos \theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2cos \theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04cos \theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ			•			
Law radially to P and using a = v^2/r $0.3(v^2/0.6) = 0.3gsin\theta - R \qquad A1 \\ [1/2 (6.72\theta - 5.04sin\theta) = \qquad M1 \qquad For substituting for v^2. 0.3gsin\theta - R] \\ Magnitude is (5.46sin\theta - \qquad A1 \qquad AG \\ 3.36\theta)N \\ [5.46cos\theta - 3.36 = 0] \qquad M1 \qquad For using dR/d\theta = 0 \\ Value of \theta is 0.908 \qquad A1 \qquad 6 \qquad (iii) \qquad [T - 0.3gcos\theta = 0.3a] \qquad M1 \qquad For applying Newton's 2^{nd} Law tangentially to P \qquad For applying Newton's 2^{nd} Law to Q \qquad [If 0.4g - 0.3gcos\theta = 0.3a is seen, assume this derives from \qquad T - 0.3gcos\theta = 0.3a \qquad \qqquad \qqquad \qqqqq \qqqqqq$			$v^2 = 6.72 \theta - 5.04 \sin \theta$	A1	5	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(ii)		M1		Law radially to P and using
			$0.3(v^2/0.6) = 0.3q\sin\theta - R$	A1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · ·	M1		For substituting for v^2 .
Magnitude is $(5.46 \sin \theta - 3.36 \theta)$ N $(5.46 \cos \theta - 3.36 = 0]$ M1 For using dR/d $\theta = 0$ Value of θ is 0.908 A1 6 (iii) [T - 0.3gcos $\theta = 0.3a$] M1 For applying Newton's 2^{nd} Law tangentially to P $(0.4g - T = 0.4a)$ M1 For applying Newton's 2^{nd} Law to Q $(0.4g - 0.3g \cos \theta = 0.3a)$ is seen, assume this derives from T - 0.3gcos $\theta = 0.3a$ M1 and T = 0.4g M0] (iii) 0.4g - 0.3gcos $\theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2\cos \theta$ A1 3 OR (iii) $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ B2 Component is $5.6 - 4.2\cos \theta$ B1 3 OR (iii) $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ B2 For differentiating $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For differentiating $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3g - 0.3a)$			[/2 (020			
Magnitude is $(5.46 \sin \theta - 3.36 \theta)$ N $(5.46 \cos \theta - 3.36 = 0]$ M1 For using dR/d $\theta = 0$ Value of θ is 0.908 A1 6 (iii) [T - 0.3gcos $\theta = 0.3a$] M1 For applying Newton's 2^{nd} Law tangentially to P $(0.4g - T = 0.4a)$ M1 For applying Newton's 2^{nd} Law to Q $(0.4g - 0.3g \cos \theta = 0.3a)$ is seen, assume this derives from T - 0.3gcos $\theta = 0.3a$ M1 and T = 0.4g M0] (iii) 0.4g - 0.3gcos $\theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2\cos \theta$ A1 3 OR (iii) $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ B2 Component is $5.6 - 4.2\cos \theta$ B1 3 OR (iii) $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ B2 For differentiating $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For differentiating $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3 + 0.4)a)$ For using $(0.4g - 0.3g \cos \theta = (0.3g - 0.3a)$			0.3 gsin θ - R]			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	A1		AG
			· ·			
Value of θ is 0.908 A1 6 (iii) $[T - 0.3gcos \theta = 0.3a]$ M1 For applying Newton's 2^{nd} Law tangentially to P $[0.4g - T = 0.4a]$ M1 For applying Newton's 2^{nd} Law to Q $[If 0.4g - 0.3gcos \theta = 0.3a]$ is seen, assume this derives from $T - 0.3gcos \theta = 0.3a$ M1 and $T = 0.4g$ M0] Component is $5.6 - 4.2cos \theta$ A1 3 OR (iii) $0.4g - 0.3gcos \theta = (0.3 + 0.4)a$ B2 $Component$ is $5.6 - 4.2cos \theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04cos \theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ $2(0.6a) = 6.72 - 5.04cos \theta$ M1 For using $v(dv/d\theta) = ar$,	M1		For using $dR/d\theta = 0$
(iii) $[T-0.3g\cos\theta=0.3a]$ M1 For applying Newton's 2^{nd} Law tangentially to P $[0.4g-T=0.4a]$ M1 For applying Newton's 2^{nd} Law to Q $[lf\ 0.4g-0.3g\cos\theta=0.3a]$ is seen, assume this derives from $T-0.3g\cos\theta=0.3a$ M1 and $T=0.4g$ M0] Component is $5.6-4.2\cos\theta$ A1 3 OR (iii) $0.4g-0.3g\cos\theta=(0.3+0.4)a$ B2 $Component$ is $5.6-4.2\cos\theta$ B1 3 OR (iii) $[2v(dv/d\theta)=6.72-5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ 2 $(0.6a)=6.72-5.04\cos\theta$ M1 For using $v(dv/d\theta)=ar$				A1	6	Ŭ
$[0.4g - T = 0.4a] \\ [0.4g - T = 0.4a] \\ [0.4$		(iii)		M1		For applying Newton's 2 nd
is seen, assume this derives from $T - 0.3g\cos\theta = 0.3a$ M1 and $T = 0.4g$ M0] Component is $5.6 - 4.2\cos\theta$ A1 3 OR (iii) $0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2\cos\theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ 2 $(0.6a) = 6.72 - 5.04\cos\theta$ M1 For using $v(dv/d\theta) = ar$,		M1		Law tangentially to P For applying Newton's 2 nd Law to Q
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						is seen, assume this
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$T - 0.3g\cos\theta = 0.3a \dots$
Component is $5.6 - 4.2\cos\theta$ A1 3 OR (iii) $0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2\cos\theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ $2(0.6a) = 6.72 - 5.04\cos\theta$ M1 For using $v(dv/d\theta) = ar$						M1
OR (iii) $0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2\cos\theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ 2 $(0.6a) = 6.72 - 5.04\cos\theta$ M1 For using $v(dv/d\theta) = ar$						and T = 0.4g M0]
(iii) $0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$ B2 Component is $5.6 - 4.2\cos\theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ 2 $(0.6a) = 6.72 - 5.04\cos\theta$ M1 For using $v(dv/d\theta) = ar$			Component is $5.6 - 4.2\cos\theta$	A1	3	
Component is $5.6 - 4.2\cos\theta$ B1 3 OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ $2(0.6a) = 6.72 - 5.04\cos\theta$ M1 For using $v(dv/d\theta) = ar$		_				
OR (iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ $2 (0.6a) = 6.72 - 5.04\cos\theta$ M1 For using $v(dv/d\theta) = ar$		(iii)				
(iii) $[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$ M1 For differentiating v^2 (from (i)) w.r.t. θ 2 (0.6a) = 6.72 - 5.04cos θ M1 For using $v(dv/d\theta) = ar$			Component is $5.6 - 4.2\cos\theta$	B1	3	
$(i)) \text{ w.r.t. } \theta$ $2 (0.6a) = 6.72 - 5.04\cos\theta \qquad \text{M1} \qquad \text{For using } v(\text{d}v/\text{d}\theta) = \text{ar}$		_				2
- (c.c.s) c.c. = c.c. c.c. ;		(iii)	$[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$			(i)) w.r.t. θ
Component in F.6. 4.2000Ω $\Lambda 13$			$2(0.6a) = 6.72 - 5.04\cos\theta$	M1		For using $v(dv/d\theta) = ar$
Component is 5.6 – 4.2cos θ A1 5			Component is $5.6 - 4.2\cos\theta$	A1	3	

1		M1		For using the principle of conservation of energy
	$\sqrt{20.6x5^2 - \sqrt{20.6v^2}} = 0.6g(2x0.4) [v^2 = 9.32]$	A1		C
	[T + 0.6g = 0.6a]	M1		For using Newton's second law
	[a = 9.32/0.4]	M1		For using $a = v^2/r$
'	T + 0.6g = 0.6x9.32/0.4	A1ft		ft incorrect energy equation
'	Tension is 8.1N	A1	6	

2	$28\cos 30^{\circ} - 10\cos 30^{\circ} [= \Delta v_{H} =$	B1		
	$(I/m)\cos\theta$]			
	$10\sin 30^{\circ} + 28\sin 30^{\circ} [= \Delta v_{V} =$	B1		
	$(I/m)\sin\theta$]			
	$[X = -I\cos\theta = -0.8885, Y = I\sin\theta =$	M1		For using my change for
	1.083]			component or resultant
		M1		For using $I^2 = X^2 + Y^2$
	I = 1.40	A1		
	$[\tan \theta = 1.083/0.8885 \text{ or } 19/15.588]$	M1		For using $\theta = \tan^{-1}(Y/-X)$ or
				$ an^{-1}(\Delta\mathrm{v_V} / \Delta\mathrm{v_H})$
	$\theta = 50.6$	A1	7	

	ALTERNATIVELY			
2		M1		For using cosine rule in correct triangle
	$(I/m)^2 = 28^2 + 10^2 - 2x28x10\cos 60^\circ$ [=604]	A1		
	$[I = 0.057 \sqrt{604}]$	M1		For using I = mv change
	I = 1.40	A1		
		M1		For using sine rule in correct triangle
	$(I/m)/\sin 60^{\circ} =$	A1		
	$10/\sin(\theta - 30^{\circ})$ or $28/\sin(150^{\circ} - 10^{\circ})$			
	θ)			
	$\theta = 50.6$	A1	7	

3	(i) $160a = 2aY$	M1		For taking moments for AB about B
	Component at B is 80N	A 1		
	Component at C is 240N	B1ft	3	ft 160 + Y
	(ii)	M1		For taking moments for BC about B or C (and using X = F) or for whole about A
	$160a \cos 60^{\circ} + 2aF\sin 60^{\circ} = 240x2a \cos 60^{\circ}$ or	A1ft		
	$80x2a \cos 60^{\circ} + 160a \cos 60^{\circ} = 2aX\sin 60^{\circ}$			
	or			
	$240(2 + 2\cos 60^{\circ})a =$			
	$160a + 160(2 + \cos 60^{\circ})a +$			
	2aFsin60°			
	Frictional force is 92.4N	A1		
	Direction is to the left	B1	4	
	(iii) [92.4/240]	M1		For using $F = \mu R$
	Coefficient is 0.385	A1ft	2	

			3.71		E : E 1E
4	(i)		M1		For using $T = mg$ and $T =$
					λ e/L
	3.5e/0/7 = 0.2g [e	=	A1		
	0.392]				
	Position is 1.092m below O.		A1	3	AG
	(ii)		M1		For using Newton's second
	` '				law
	0.2g - 3.5(0.392 + x)/0.7 = 0.2a		A1ft		ft incorrect e
	a = -25x		A1ft		ft incorrect e
	$[25A^2 = 1.6^2 \text{ or }$		M1		For using $A^2n^2 = v_{max}^2$ or
	$\frac{1}{2}(0.2)1.6^2 + 3.5\times0.392^2/(2\times0.7) +$		1711		Energy at lowest point =
	0.2gA				energy at equilibrium point (4
	= 3.5x(0.392 +				terms needed including 2 EE
	$= 3.5 \times (0.5)2 + $ A) ² /(2x0.7)				terms)
			A 1.C4	_	terms)
	Amplitude is 0.32m			5	
	$(iii) [x = 0.32\sin 2^c]$		M1		For using $x = Asin nt or$
					$A\cos(\pi/2$ -
					nt)
	x = 0.291		A1		
	$[v = 0.32x5\cos 2^{c} \text{ or } v^{2} = 25(0.32^{2} - 0.2)]$	(91^2)	M1		For using $v = Ancos nt$ or
	or				$v^2 = n^2(A^2 - x^2)$ or
	0.256 + 0.38416 + 0.2g(0.291)				Energy at equilibrium point =
	$= \frac{1}{2} 0.2 v^2 +$				energy at $x = 0.291$
	$2.5(0.683)^2$				
	$v^2 = 0.443$		A1		May be implied
	v = -0.666 (or 0.666 upwards)		A1	5	•

5	(i) $[mg - mkv^2 = ma]$	M1		For using Newton's second
				law
	$(v dv/dx)/(g - kv^2) = 1$	A1	2	AG
	(ii) $[-\frac{1}{2}[\ln(g-kv^2)]/k = x (+C)]$	M1		For separating variables and
				attempting to integrate
	$[-(\ln g)/2k = C]$	M1		For using $v(0) = 0$ to find C
	$x = [-\frac{1}{2} [ln{(g - kv^2)/g}]/k$	A1		Any equivalent expression for
				X
	$[\ln\{(g - kv^2)/g\} = \ln(e^{-2kx})]$	M1		For expressing in the form
				$\ln f(v^2) = \ln g(x)$ or equivalent
	$v^2 = (1 - e^{-2kx})g/k$	A 1		
		M1		For using $e^{-Ax} \rightarrow 0$ for +ve A
	Limiting value is $\sqrt{g/k}$	A1ft	7	AG
	(iii) $[1 - e^{-600k} = 0.81]$	M1		For using $v^2(300) = 0.9^2 g/k$
	[-600k = ln(0.19)]	M1		For using logarithms to solve
				for k
	k = 0.00277	A1	3	

6	(i) $[u \sin 30^\circ = 3]$		M1		For momentum equation for
	(1) [4 511150 5]		1,11		B, normal to line of centres
	u = 6		A1	2	_,
	(ii) [4sin88.1° = v si	n45°]	M1		For momentum equation for
					A, normal to line of centres
	v = 5.65		A 1		
			M1		For momentum equation along
					line of centres
	$0.4(4\cos 88.1^{\circ})$ – mu cos	$30^{\circ} = -0.4 \text{v } \cos 45^{\circ}$	A1	_	
	m = 0.318		<u>A1</u>	5	
	(iii)	0	M1		For using NEL
	$0.75(4\cos\theta + u\cos 30^{\circ})$	$= v \cos 45^{\circ}$	A1		
	$4\sin\theta = v \sin 45^{\circ}$		B1		
	$[3\cos\theta + 4.5\cos 30^{\circ} = 4\cos\theta]$	$\sin heta$]	M1		For eliminating v
	$8\sin\theta - 6\cos\theta = 9\cos3\theta$)°	A1	5	AG
7	(i)(a) Extension = 1.2	α – 0.6	B1		
	$[T = mgsin \alpha]$		M1		For resolving forces tangentially
	0.5 x 9.8 sin $\alpha = 6.86(1.2)$	α - 0.6)/0./6	A1ft		
	$\sin \alpha = 2.8 \alpha - 1.4$		A1	4	AG
	(i)(b) [0.8, 0.756, 0.7 0.741, 0.741,	· · · · · · · · · · · · · · · · · · ·	M1		For attempting to find α_2 and α_3
	$\alpha = 0.74$		A1	2	
	(ii) $\Delta h = 1.2(\cos 0.5)$ [0.217]	$5 - \cos(0.8)$	B1		
	[0.5x9.8x0.217 = 1.06]	355]	M1		For using Δ (PE) = mg Δ h
	$[6.86(1.2\times0.8-0.6)^2/(2\times0.8)^2]$	(0.6) = 0.74088	M1		For using $EE = \lambda x^2/2L$
	,		M1		For using the principle of conservation of energy
	$\frac{1}{2} 0.5 v^2 = 1.063550.7$	4088	A1		Any correct equation for v^2
	Speed is 1.14ms ⁻¹		A1		· -
	Speed is decreasing		B1ft	7	

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using $T = 2\pi/\omega$
		M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	C max
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$ or for using $v = A \omega \cos \omega t$ and $x = A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect ω
	or $x = 3\sin(1.03x0.60996)$			
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes shown
	For magnitudes of 2 sides correctly marked	A1		
	For magnitudes of all 3 sides correctly marked	A1		
	, , , , , , , , , , , , , , , , , , ,	M1		For attempting to find angle (α) opposite to the side of magnitude 0.057 x 7
		M1		For correct use of the cosine rule or equivalent
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \times 0.57 \times 0.6\cos \alpha$	A1ft		•
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$
2	ALTERNATIVE METHOD			
_		M1		For using $I = \Delta mv$ parallel to the initial direction of motion or parallel to the impulse
	$-0.6\cos \alpha = 0.057 \text{ x } 7\cos \beta - 0.057 \text{ x } 10$ or $0.6 = 0.057 \text{x} 10\cos \alpha + 0.057 \text{x} 7\cos \gamma$	A1		or parametric the impulse
	,	M1		For using $I = \Delta mv$ perpendicular to the initial direction of motion
	$0.6\sin \alpha = 0.057 \times 7\sin \beta$ or $0.057 \times 10\sin \alpha = 0.057 \times 7\sin \gamma$	A1		or perpendicular to the impulse
	or order mountain	M1		For eliminating β *or γ
	$0.399^{2} = (0.57 - 0.6\cos\alpha)^{2} + (0.6\sin\alpha)^{2}$ or $0.399^{2} = (0.6 - 0.57\cos\alpha)^{2} + (0.057\sin\alpha)^{2}$	Alft		For eminiating $ ho$ for γ
	or $0.399 = (0.0 - 0.3 / \cos \alpha) + (0.03 / \sin \alpha)$			(100 20.0)

A1 $7 (180 - 39.8)^{\circ}$

Angle is 140°

3 (i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law with a = v dv/dx
(1/v) dv/dx = -2	A1	2	AG
(ii) $\left[\int (1/v)dv = \int -2dx\right]$	M1		For separating variables and attempting to integrate
ln v = -2x (+C)	A1		
$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
$v = ue^{-2x}$	A1	4	AG
(iii) $ [\int e^{2x} dx = \int u dt] $	M1		For using v = dx/dt and separating variables
$e^{2x}/2 = ut (+C)$	A1		
$[e^{2x}/2 = ut + \frac{1}{2}]$	M1		For using $x(0) = 0$
u = 6.70	A1	4	Accept $(e^4 - 1)/8$

ALTERNATIVE METHOD FOR PART (iii)			
$\left[\int \frac{1}{v^2} dv = -2 \int dt - 1/v = -2t + A, \text{ and} \right]$	M1		For using a = dv/dt, separating variables, attempting to integrate
A = -1/u]			and using $v(0) = u$
	M1		For substituting $v = ue^{-2x}$
$-e^{2x}/u = -2t - 1/u$	A 1		-
u = 6.70	A1	4	Accept $(e^4 - 1)/8$

4	$y=15\sin\alpha\qquad (=12)$	B1		
	$[4(15\cos\alpha) - 3 \times 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
	Equation complete with not more than one error	A1		
	4a + 3b = 0	A 1		
		M1		For using NEL in the direction of l.o.c.
	$0.5(15\cos\alpha + 12) = b - a$	A1		
	[a = -4.5, b = 6]	M1		For solving for a and b
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)]	M1		For correct method for speed or direction of A
	Speed of A is 12.8ms ⁻¹ and direction is 111°	A1		Direction may be stated in any
	anticlockwise from 'i' direction			form, including $\theta=69^{\circ}$ with
				heta clearly and appropriately
				indicated
	Speed of B is 6ms ⁻¹ to the right	A 1	10	Depends on first three M marks

5	(i)	M1		For taking moments of forces on
				BC about B
	$80 \times 0.7\cos 60^{\circ} = 1.4T$	A1		
	Tension is 20N	A1		
	$[X = 20\cos 30^{\circ}]$	M1		For resolving forces horizontally
	Horizontal component is 17.3N	A1ft		$ft X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin^2 30^\circ]$	M1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	$ft Y = 80 - T\sin 30^{\circ}$
	(ii)	M1		For taking moments of forces on
				AB, or on ABC, about A
	$17.3 \times 1.4\sin \alpha = (80 \times 0.7 + 70 \times 1.4)\cos \alpha$ or	A1ft		
	$80x0.7\cos\alpha + 80(1.4\cos\alpha + 0.7\cos60^{\circ}) =$			
	$20\cos 60^{\circ}(1.4\cos \alpha + 1.4\cos 60^{\circ}) +$			
	$20\sin 60^{\circ}(1.4\sin \alpha + 14\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{2}80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical
				expression for $\tan \alpha$
	$\alpha = 81.1^{\circ}$	A1	4	r
	ALTERNATIVE METHOD FOR PART (i)			
		M1		For taking moments of forces on
				BC about B

ALTERNATIVE METHOD FOR PART (i)		
	M1	For taking moments of forces on
H 1 4 : 600 H 1 4 600 00 07 600	4.1	BC about B
$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1	Where H and V are components of
	3.54	T
	M1	For using $H = V \sqrt{3}$ and solving
		simultaneous equations
Tension is 20N	A 1	
Horizontal component is 17.3N	B1ft	ft value of H used to find T
[Y = 80 - V]	M1	For resolving forces vertically
Vertical component is 70N	A1ft 7	ft value of V used to find T

6	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
	$2058x/5.25 = 80 \times 9.8 \qquad (x = 2)$	A 1		1 01 0001119 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	OP = 7.25 m	A1	3	AG From 5.25 + 2
	(ii) Initial PE = $(80 + 80)g(5)$ (= 7840)	B1		
	or $(80 + 80)$ gX used in energy equation			
	Initial KE = $\frac{1}{2}$ (80 + 80)3.5 ² (= 980)	B1		
	[Initial EE = $2058x2^2/(2x5.25)$ (= 784),	M1		For using $EE = \lambda x^2/2L$
	Final EE = $2058x7^2/(2x5.25)$ (= 9604), or			Tor doing EE WW72E
	$2058(X + 2)^{2}/(2x5.25)$			
	[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
	final energy = 9604			compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4)$			principle of conservation of
	$196X^2 - 784X - 980 = 0$			energy, or using the principle
	•			and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach	A 1	5	AG
	the net			
	(iii) [PE gain = $80g(7.25 + 5)$]	M1		For finding PE gain from net
				level to O
	PE gain = 9604	A 1		
	PE gain = EE at net level → P just reaches O	A1	3	AG
	(iv) For any one of 'light rope', 'no air	B1		
	resistance', 'no energy lost in rope'			
	For any other of the above	B1	2	

FIRST ALTERNATIVE METHOD FOR			
PART (ii)			
[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second law with $a = v \frac{dv}{dx}$, separating the variables and attempting to integrate
$v^2/2 = gx - 1.225x^2 \ (+C)$	A1		Any correct form
	M1		For using $v(2) = 3.5$
C = -8.575	A 1		
$[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P\&Q \text{ just}$ reach the net	A1	5	AG

SECOND ALTERNATIVE METHOD FOR PART (ii)				
$\ddot{x} = g - 2.45x$	(=-2.45(x-4))	B1		
		M1	For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$	
$3.5^2 = 2.45(A^2 - (-2)^2)$	(A=3)	A1		
[(4-2)+3]		M1	For using 'distance travelled downwards by P and Q = distance to new equilibrium position + A	
distance travelled downwar	ds by P and $Q = 5 \rightarrow P Q$	A1	5 AG	
just reach the net				

7	(i) $[a = 0.7^2/0.4]$	N/I 1		For using $a = v^2/r$
'		M1		For using $a = V/r$
	For not more than one error in	A1		
	$T - 0.8g\cos 60^{\circ} = 0.8x0.7^{2}/0.4$			
	Above equation complete and correct	A1		
	Tension is 4.9N	A1	4	
	(ii)	M1		For using the principle of
	2			conservation of energy
	$\frac{1}{2} 0.8 v^2 =$	A1		(v = 2.1)
	$\frac{1}{2} 0.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^\circ$			
	(2.1 - 0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms ⁻¹	A1	4	AG
	(iii)	M1		For using Newton's second law transversely
	$(m)0.4\ddot{\theta} = -(m)g \sin \theta$	A1		*Allow m = 0.8 (or any other numerical value)
	$[0.4\ddot{\theta} \approx -g\theta]$	M1		For using $\sin \theta \approx \theta$
	[$\frac{1}{2}$ m0.15 ² = mg0.4(1 - cos θ _{max}) θ _{max} = 4.34° (0.0758rad)]	M1		For using the principle of conservation of energy to find θ_{max}
	$ heta_{ m max}$ small justifies $0.4\ddot{ heta}\approx$ -g $ heta$, and this implies SHM	A1	5	
	(iv) $[T = 2\pi/\sqrt{24.5} = 1.269]$	M1		For using $T = 2\pi/n$
	$[\sqrt{24.5} t = \pi]$			or
	• · · · · · · · · · · · · · · · · · · ·			for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
				(considering velocity)
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2}T$

	T	1		T
1	(i) $[0.5(v_x - 5) = -3.5, 0.5(v_y - 0) = 2.4]$	M1		For using $I = m(v - u)$ in x or y direction
	Component of velocity in x-direction is –2ms ⁻¹	A1		
	Component of velocity in y-direction is 4.8ms ⁻¹	A1		
	Speed is 5.2ms ⁻¹	A1	4	AG
SR For	candidates who obtain the speed without finding the required	componen	ts of v	elocity (max 2/4)
	Components of momentum after impact are -1 and 2.4 Ns	B1		
	Hence magnitude of momentum is 2.6 Ns and required	B1		
	speed is $2.6/0.5 = 5.2 \text{ms}^{-1}$			
	(ii)	M1		For using $I_y = m(0 - v_y)$ or
	(11)	IVII		$I_v = -y$ -component of I^{st} impulse
	Component in 2 4No	A 1	2	1 _y = -y-component of 1 impulse
	Component is –2.4Ns	A1	2	
2	(i)	M1		For 2 term equation, each term
	(1)	IVII		representing a relevant moment
	50.4: 0.55.0	Α 1		representing a relevant moment
	$50x1\sin\beta = 75x2\cos\beta$	A1		
	$\tan \beta = 3$	A1	3	AG
	1	D 1		
	(ii) Horizontal force is 75N	B1	1	
	Vertical force is 50N	B1	2	
	(iii)	M1		For taking moments about A for the
				whole or for AB only
	For not more than one error in	A1		Where $\tan \alpha = 0.75$
	$Wx1\sin\alpha + 50(2\sin\alpha + 1\sin\beta) =$			
	• •			
	$75(2\cos\alpha + 2\cos\beta)$ or Wx1sin α +			
	$50x2\sin\alpha = 75x2\cos\alpha$			
	0.6W + 107.4 = 167.4 or $0.6W + 60 = 120$	A1		
	W = 100	A1	4	
			•	
3	(i)	M1		For using the principle of conservation
3	(i)	M1		For using the principle of conservation of momentum in the i direction
3		M1 A1		
3	(i) $6x4 - 3x8 = 6a + 3b$ $(0 = 2a + b)$	A1		of momentum in the i direction
3	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1 M1		
3	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)$ $(4 + 8)e = b - a$ $(12e = b - a)$	A1 M1 A1	5	of momentum in the i direction For using NEL
3	6x4 - 3x8 = 6a + 3b (0 = 2a + b)	A1 M1	5	of momentum in the i direction For using NEL 'to the left' may be implied by
3	$6x4 - 3x8 = 6a + 3b$ $(0 = 2a + b)$ $(4 + 8)e = b - a$ $(12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left	A1 M1 A1 A1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram
3	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)$ $(4 + 8)e = b - a$ $(12e = b - a)$	A1 M1 A1 A1	5	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$
3	$6x4 - 3x8 = 6a + 3b$ $(0 = 2a + b)$ $(4 + 8)e = b - a$ $(12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left	A1 M1 A1 A1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity
3	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left$	A1 M1 A1 A1 B1ft M1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged'
3	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left(ii) b = 8e \text{ ms}^{-1}(8e)^2 = (4e)^2 + v^2$	A1 M1 A1 A1 B1ft M1		of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity
3	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left$	A1 M1 A1 A1 B1ft M1	5	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged'
	6x4 - 3x8 = 6a + 3b $(0 = 2a + b)(4 + 8)e = b - a$ $(12e = b - a)Component is 4e \text{ ms}^{-1} to the left(ii) \qquad b = 8e \text{ ms}^{-1} (8e)^2 = (4e)^2 + v^2 v = 4$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$
4	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged'
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 M1		of momentum in the \mathbf{i} direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' \mathbf{j} component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1\right]$	A1 M1 A1 A1 B1ft M1 A1ft A1		of momentum in the \mathbf{i} direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram If $b = -2a$ or $b = a + 12e$ For using ' \mathbf{j} component of A's velocity remains unchanged' If $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 M1		of momentum in the \mathbf{i} direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' \mathbf{j} component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 M1		of momentum in the \mathbf{i} direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram If $b = -2a$ or $b = a + 12e$ For using ' \mathbf{j} component of A's velocity remains unchanged' If $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by v
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is 4e ms ⁻¹ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by $g - 0.49v$, or equivalent
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by $a = -4e$ and arrow in diagram ft $b = -2a$ or $b = a + 12e$ For using ' j component of A's velocity remains unchanged' ft $b^2 = a^2 + v^2$ For using Newton's second law For relevant manipulation For synthetic division of v by v
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged' ft b ² = a ² + v ² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e ms^{-1}$ to the left $(ii) b = 8e ms^{-1}$ $(8e)^2 = (4e)^2 + v^2$ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$	A1 M1 A1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 M1 M1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged' ft b ² = a ² + v ² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 B1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged' ft b ² = a ² + v ² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$ (ii) $\int \frac{20}{20 - v} dv = -20 \ln(20 - v)$ $-20 \ln(20 - v) - v = 0.49x (+C)$	A1 M1 A1 B1ft M1 A1ft A1 M1 A1 M1 A1 M1 A1 A1 A1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using 'j component of A's velocity remains unchanged' ft b² = a² + v² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and integrating
	$6x4 - 3x8 = 6a + 3b (0 = 2a + b)$ $(4 + 8)e = b - a (12e = b - a)$ Component is $4e \text{ ms}^{-1}$ to the left $(ii) b = 8e \text{ ms}^{-1}$ $(8e)^2 = (4e)^2 + v^2 $ $v = 4$ $(i) [mg - 0.49mv = ma]$ $mv \frac{dv}{dx} = mg - 0.49 mv$ $\left[\frac{v (dv / dx)}{g - 0.49 v} = 1 \right]$ $\left[\frac{v}{9.8 - 0.49 v} = \frac{-1}{0.49} \left(\frac{(9.8 - 0.49 v) - 9.8}{9.8 - 0.49 v} \right) \right]$ $\left(\frac{20}{20 - v} - 1 \right) \frac{dv}{dx} = 0.49$ (ii)	A1 M1 A1 B1ft M1 A1ft A1 M1 A1 M1 M1 B1	4	of momentum in the i direction For using NEL 'to the left' may be implied by a = -4e and arrow in diagram ft b = -2a or b = a + 12e For using ' j component of A's velocity remains unchanged' ft b ² = a ² + v ² For using Newton's second law For relevant manipulation For synthetic division of v by g - 0.49v, or equivalent AG For separating the variables and

5	(i)	M1		For using Newton's second law with a =
				0
	$mgsin30^{\circ} = 0.75mgx/1.2$	A1		
	Extension is 0.8m	A1	3	AG
	(ii) PE loss = $mg(1.2 + 0.8)\sin 30^{\circ}$	B1		
	(mg)			
	EE gain = $0.75 \text{mg}(0.8)^2/(2 \text{x} 1.2)$ (0.2 mg)	B1		
	$[\frac{1}{2} \text{ mv}^2 = \text{mg} - 0.2 \text{mg}]$	M1		For an equation with terms representing
	1: 200 -1		١,	PE, KE and EE in linear combination
	Maximum speed is 3.96ms ⁻¹	A1	4	6 11 12 1 1 001 (1)
	(iii) PE loss = $mg(1.2 + x)\sin 30^{\circ}$ or	B1ft		ft with x or d – 1.2 replacing 0.8 in (ii)
	mgdsin30°	D16		6 4 1 10 1 00 (2)
	EE gain = $0.75 \text{mgx}^2/(2x1.2)$ or	B1ft		ft with x or d – 1.2 replacing 0.8 in (ii)
	$0.75 \operatorname{mg}(d - 1.2)^{2} / (2x1.2)$	3.41		E DEL EE CALC
	$[x^2 - 1.6x - 1.92 = 0, d^2 - 4d + 1.44 = 0]$	M1		For using PE loss = EE gain to obtain a
	D'anterior d'a 2 des	A 1	1	3 term quadratic in x or d
A 14 a ma a 4	Displacement is 3.6m	A1	4	4/4
	ive for parts (ii) and (iii) for candidates who use Newton's sec			
In the 10	llowing x, y and z represent displacement from equil. pos ⁿ , ex $[\text{mv dv/dx} = \text{mgsin}30^{\circ} - 0.75\text{mg}(0.8 + \text{x})/1.2,]$	M1	na aisi 	For using N2 with a = v dv/dx
	$\frac{1}{1}$ mv dv/dy = mgsin30° - 0.75mg(0.8 + x)/1.2, mv dv/dy = mgsin30° - 0.75mgy/1.2,	IVII		For using N2 with a = v dv/dx
	mv dv/dy = mgsin30 = 0.75mgy/1.2, mv dv/dz = mgsin30° = 0.75mg(z = 1.2)/1.2]			
	$\frac{111}{\text{v}^2/2} = -\frac{12}{3} \frac{1}{12} \frac{1}{12}$ $\frac{1}{12} \frac{1}{12} \frac{1}{1$	A1		
	$v^2/2 = gy/2 - 5gy^2/16 + C$ or	AI		
	$v^2/2 = gy/2 - 3gy/10 + C \text{ or}$ $v^2/2 = 5gz/4 - 5gz^2/16 + C$			
	$[C = 0.6g + 5g(-0.8)^2/16 \text{ or } C = 0.6g \text{ or}$	M1		For using $v^2(-0.8)$ or $v^2(0)$ or $v^2(1.2) =$
	$C = 0.6g + 3g(0.6) + 16 \text{ d} = -0.6g \text{ d}$ $C = 0.6g - 5g(1.2/4) + 5g(1.2)^2/16$	1111		$2(g \sin 30^{\circ})1.2$ as appropriate
	$v^2 = (-5x^2/8 + 1.6)g \text{ or } v^2 = (y - 5y^2/8 + 1.2)g \text{ or } v^2 = (5z/2)$	A1		2(g sm30)1.2 as appropriate
	$-5z^2/8 - 0.9$)g	111		
	(ii) $[v_{\text{max}}^2 = 1.6g \text{ or } 0.8g - 0.4g + 1.2g \text{ or } 5g - 2.5g$	M1		For using $v_{max}^2 = v^2(0)$ or $v^2(0.8)$ or
	-0.9g]			$v^2(2)$ as appropriate
	Maximum speed is 3.96ms ⁻¹	A1		()
	(iii) $[5x^2 - 12.8 = 0 \Rightarrow x = 1.6,$	M1		For solving $v = 0$
	$5y^2 - 8y - 9.6 = 0 \implies y = 2.4,$			Č
	$5z^2 - 20z + 7.2 = 0 \implies z = 3.6$			
	Displacement is 3.6m	A1	8	
Alternat	ive for parts (ii) and (iii) for candidates who use Newton's sec	cond law a	nd SH	M analysis.
	$[m \ddot{x} = mgsin30^{\circ} - 0.75mg(0.8 + x)/1.2 \Rightarrow$	M1		For using N2 with
	$\ddot{x} = -\omega^2 x; v^2 = \omega^2 (a^2 - x^2)$			$v^2 = \omega^2 (a^2 - x^2)$
	$v^2 = 5g(a^2 - x^2)/8$	A1		
	$V = 3g(\alpha - X)/6$	M1		For using $v^2(-0.8) =$
		1111		$2(g\sin 30^{\circ})1.2$
	$v^2 = 5g(2.56 - x^2)/8$	A1		2(501130)1.2
	(ii) $[v_{\text{max}}^2 = 5g \times 2.56 \div 8]$	M1		For using $v_{max}^2 = v^2(0)$
	Maximum speed is 3.96ms ⁻¹	A1		inax (V)
	(iii) $[2.56 - x^2 = 0 \Rightarrow x = 1.6]$	M1		For solving $v = 0$
	Displacement is 3.6m	A1		
L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	

	12 2	1	1	T
6	(i) $[\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + 2mg]$	M1		For using the principle of conservation of energy
	Speed is 3.13ms ⁻¹	A1		
	$[T = mv^2/r]$	M1		For using Newton's second law
				horizontally and $a = v^2/r$
	Tension is 1.96N	A1ft	4	
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using $T = 0$ (may be implied)
	$v^2 = -2g\cos\theta$	A1		
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[-2g\cos\theta = 49 - 4g + 4g\cos\theta]$	M1		For eliminating v ²
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	
Alternat	tive for candidates who eliminate v^2 before using $T = 0$.		į.	'
	(ii) $[T - mg\cos\theta = mv^2/r]$	M1		For using Newton's second law radially
		M1		For using the principle of conservation of energy
	$\frac{1}{2}m7^2 = \frac{1}{2}mv^2 + mg(2 - 2\cos\theta)$	A1		
	$[T - mg\cos\theta = m(49 - 4g + 4g\cos\theta)2]$	M1		For eliminating v ²
		M1		For using $T = 0$ (may be implied)
	$-2g\cos\theta = 49 - 4g + 4g\cos\theta$	A1ft		ft error in energy equation
	$6g\cos\theta = -9.8$	A1		May be implied by answer
	$\theta = 99.6$	A1	8	

_	T 4 (4 22)/22	D.1	1	
7	(i) $T = 4mg(4 + x - 3.2)/3.2$	B1		
	[ma = mg - 4mg(0.8 + x)/3.2]	M1		For using Newton's second law
	$4\ddot{x} = -49x$	A1	3	AG
	(ii) Amplitude is 0.8m	B1		(from 4 + A = 4.8)
	Period is $2\pi/\omega$ s where $\omega^2 = 49/4$	B1		
	$\frac{1 \text{ crited is } 2\pi t / \text{ to s where } \omega = \pm \pi t / \pm 1}{2\pi t / \text{ to s where } \omega = \pm \pi t / \pm 1}$	M1		String is instantaneously slack when
		1711		shortest $(4 - A = 3.2 = L)$. Thus required
				interval length = period.
	Slack at intervals of 1.8s	A1	4	AG
	(iii) [ma = -mgsin θ]	M1		For using Newton's second law
	(m) [ma = -mgsm \(O\)]	1411		tangentially
	, ä a	A1		tungentuny
	$mL\ddot{\theta} = -mg\sin\theta$		_	
	For using $\sin \theta \approx \theta$ for small angles and obtaining $\ddot{\theta} \approx$	A1	3	AG
	$-(g/L)\theta$			
	(iv) $[\theta = 0.08\cos(3.5\text{x}0.25)] (= 0.05127)$	M1		For using = $_{0}\cos\omega t$ where $\omega^{2}=12.25$
	$[0] = 0.08\cos(3.3\times0.23) = 0.03127$	1411		
				(may be implied by $\mathcal{G} = -\omega$ osin ω t)
	$[\dot{\theta} = -3.5(0.08)\sin(3.5x0.25),$	M1		For differentiating = $_{0}\cos\omega t$ and
	$\dot{\theta}^2 = 12.25(0.08^2 - 0.05127^2)$			using $\dot{\mathcal{G}}$ or for using
	0 -12.23(0.08 - 0.03127)]			$\dot{\theta}^2 = \omega^2 (\theta_0^2 - \theta^2)$ where $\omega^2 = 12.25$
				` 0
	$\dot{\theta} = \mp 0.215$	A1		May be implied by final answer
	[v = 0.215x9.8/12.25]	M1		Forming v. I. Oand I. σ/σ^2
			_	For using $v = L \mathcal{G}$ and $L = g/\omega^2$
	Speed is 0.172 ms ⁻¹	A1	5	

1	(i) $T = (1.35 \text{mg})(3 - 1.8) \div 1.8$	B1		
	[0.9mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82ms ⁻²	A1	3	
	(ii) Initial EE =			
	$(1.35\text{mg})(3-1.8)^2 \div (2x1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	

2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A 1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft 8sin27° + candidate's ans. in (i)
				For using $ I = m \times change in$
	$ I = 0.2 \times 5.81$	M1		velocity
				ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms ⁻¹	A1ft	3	both M marks are scored.

3				For using the principle of conservation of momentum in the
		M1		i direction
$0.8x12\cos 60^{\circ} = 0.8a + 2b$		A1		
		M1		For using NEL
$0.75 \times 12 \cos 60^{\circ} = b - a$		A1		_
				For eliminating b; depends on at
[4.8 = 0.8a + 2(a + 4.5)]		DM1		least one previous M mark
a = -1.5		A1		_
Comp. of vel. perp. to l.o.c. after impact	is			
	12sin60°	B1		
				For correct method for speed or
		M1		direction
The speed of A is 10.5ms ⁻¹		A1ft		ft $v^2 = a^2 + 108$
_				Accept $\theta = 81.8^{\circ}$ if θ is clearly
D: .:			1.0	and appropriately indicated;
Direction of A is at 98.2° to l.o.c.		A1ft	10	ft $\tan^{-1}\theta = (12\sin 60^{\circ})/ a)$

4	(i) $[\text{mgsin } \alpha - 0.2\text{mv} = \text{ma}]$	M1		For using Newton's second law
	$5 \frac{dv}{dt} = 28 - v$	A1		AG For separating variables and
	$\left[\int \frac{5}{28 - v} dv = \int dt\right]$	M1		integrating
	$(C) - 5\ln(28 - v) = t$	A1		
		M1		For using $v = 0$ when $t = 0$ ft for $ln[(28 - v)/28] = t/A$ from
	$\ln[(28 - v)/28] = -t/5$	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	8	ln[(28 - v)/28] = t/A previously
	(ii)			For using $a = (28 - v(t))/5$ or $a = d(28 - 28e^{-t/5})dt$ and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
	Acceleration is 0.758ms ⁻²	A1ft	2	ft from incorrect v in the form $a + be^{ct}$ ($b \ne 0$); Accept 5.6/ e^2

5	(i)			For taking moments about B or about A for the whole or
				For taking moments about X for
				the whole and using $R_A + R_B =$
		M1		280 and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			-
	$1.4R_B = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{\mathrm{B}}$	A 1		
	-0.25x130 = 0			
	$R_A = 125N$	A1		AG
	$R_{\rm B} = 155N$	B1	4	
	(ii)			For taking moments about X for
		M1		XA or XB
	$1.2F_A = -150x0.45 + 0.9R_A$ or			
	$1.2F_{B} = 0.5R_{B} - 130x0.25$	A 1		
	F_A or $F_B = 37.5N$	A1ft		$F_B = (1.25R_B - 81.25)/3$
	F_B or $F_A = 37.5N$	B1ft	4	
	(iii) Horizontal component is 37.5N to the			ft H = F or H = $56.25 - 0.75$ V or
	left	B1ft		12H = 325 + 5V
				For resolving forces on XA
	$[Y + R_A = 150]$	M1		vertically
	Vertical component is 25N upwards	A1ft	3	ft $3V = 225 - 4H$ or $V = 2.4H - 65$

6	(i)			For applying Newton's second law
	[0.36 - 0.144x = 0.1a]	M1		11 7 6
	$\ddot{x} = 3.6 - 1.44x$	A1		
	$\ddot{y} = -1.44y \rightarrow \text{SHM}$ or	D.4		
	$d^{2}(x-2.5)/dt^{2} = -1.44(x-2.5)$ SHM	B1		
		M1		For using $T = 2\pi/n$
	Of period 5.24s	A1	5	AG
	(ii) Amplitude is 0.5m	B1		
		M1		For using $v^2 = n^2(a^2 - y^2)$
	$0. 48^2 = 1.2^2 (0.5^2 - y^2)$	A1ft		
	Possible values are 2.2 and 2.8	A 1	4	
	(iii) $[t_0 = (\sin^{-1}0.6)/1.2; t_1 = (\cos^{-1}0.6)/1.2]$	M1		For using $y = 0.5\sin 1.2t$ to find t_0 or y
				$= 0.5\cos 1.2t$ to find t_1
	$t_0 = 0.53625 \dots \text{ or } t_1 = 0.7727 \dots$	A1		Principal value may be implied
	(a)			For using $\Delta t = 2t_0$ or
	$[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi - 2\cos^{-1}0.6)/1.2]$	M1		$\Delta t = T/2 - 2t_1$
	Time interval is 1.07s	A1ft		ft incorrect t_0 or t_1
	(b)			From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
				2.62 - ans(a) or
	Time interval is 1.55s	B1ft	5	incorrect t_0 or t_1

7	(i)	M1		For using KE gain = PE loss
	$\frac{1}{2}$ mv ² = mga(1 - cos θ)	A1		
	$aw^2 = 2g(1 - \cos\theta)$	B1	3	AG From v = wr
	(ii)			For using Newton's second law
		3.61		radially (3 terms required) with accel
	2/	M1 A1		$= v^2/r \text{ or } w^2r$
	$mv^2/a = mgcos \theta - R \text{ or } maw^2 = mgcos \theta - R$	А		For eliminating v ² or w ² ; depends on
	$[2mg(1-\cos\theta) = mg\cos\theta - R]$	DM1		at least one previous M1
	$R = mg(3\cos\theta - 2)$	A1ft	4	ft sign error in N2 equation
	(iii)			For using Newton's second law
	$[mgsin \theta = m(accel.)]$ or			tangentially or
	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$	M1		differentiating $aw^2 = 2g(1 - \cos \theta) \text{ w.r.t. t}$
		A1		$aw = 2g(1 - \cos \theta) \text{ w.r.t. t}$
	Accel. $(=a\theta) = g\sin\theta$			F : P 0
	$[\theta = \cos^{-1}(2/3)]$	M1		For using $R = 0$
				ft from incorrect R of the form
	Acceleration is 7.30ms ⁻²	A1ft	4	mg(Acos +B), A \neq 0, B \neq 0; accept g $\sqrt{5}$ /3
	(iv)			For using rate of change =
		M1		$(dR/d\theta)(d\theta/dt)$
	$dR/dt = (-3 \text{mgsin } \theta) \sqrt{2g(1-\cos\theta)/a}$			ft from incorrect R of the form
	110 th (5111g51110) \(\sqrt{2g} \) \(\tag{1} \)	A1ft		$mg(Acos +B), A \neq 0$
		M1		For using $\cos \theta = 2/3$
				Any correct form of \dot{R} with
	Rate of change is $-mg \sqrt{\frac{10 g}{3a}} \text{ Ns}^{-1}$			$\cos \theta = 2/3$ used; ft with from
	√ 3 <i>a</i>	A1ft	4	incorrect R of the form mg(Acos +B), $A \neq 0$, $B \neq 0$

1 (i)	For triangle sketched with sides (0.5)2.5 and		
	$(0.5)6.3$ and angle θ correctly marked OR		
	Changes of velocity in i and j directions		
	$2.5\cos\theta - 6.3$ and $2.5\sin\theta$, respectively.	B1	May be implied in subsequent working.
	For sides 0.5x2.5, 0.5x6.3 and 2.6 (or 2.5, 6.3		
	and 5.2) OR		
	$-2.6\cos\alpha = 0.5(2.5\cos\theta - 6.3)$ and	B1ft	May be implied in subsequent working
	$2.6\sin\alpha = 0.5(2.5\sin\theta)$	DIII	May be implied in subsequent working.
	$[5.2^2 = 2.5^2 + 6.3^2 - 2x2.5x6.3\cos\theta]$ OR		For using cosine rule in triangle or eliminating
	$2.6^2 = 0.5^2 \{ (2.5\cos\theta - 6.3)^2 + (2.5\sin\theta)^2 \}$	M1	α .
	$\cos \theta = 0.6$	A1	AG
		[4]	
(ii)			For appropriate use of the sine rule or
			substituting for θ in one of the above
		M1	equations in θ and α
	$\sin \alpha = 2.5 \times 0.8 / 5.2 \qquad \text{OR}$		
	$-2.6\cos\alpha = 0.5(2.5\times0.6 - 6.3)$	A1	
	V 1 1 1 C1550 0 555	M1	For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{\circ}$
	Impulse makes angle of 157° or 2.75° with	A 1	
	original direction of motion of P.	A1 [4]	
		[+]	SR (relating to previous 2 marks; max 1 mark
			out of 2)
			$\alpha = 23^{\circ} \text{ or } 0.395^{\circ}$ B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
	X - Y = 35	A1	needed)
		[2]	
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
			needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
, ,			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
	-	[4]	1

3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$ $T_A - T_B = 18 - 6 = 12 = W \rightarrow P \text{ in equil'm.}$	M1 A1 [2]	For using $T = \lambda x/L$ for PA or PB
(ii)	Extensions are $0.45 + x$ and $0.15 - x$ Tensions are $18 + 40x$ and $6 - 40x$	B1 B1 [2]	AG From T = λ x/L for PA and PB
(iii)	[12 + (6 - 40x) - (18 + 40x) = 12 \ddot{x} /g] \ddot{x} = -80gx/12 → SHM Period is 0.777s	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period = $2 \pi \sqrt{12 /(80 g)}$
(iv)	$[v_{max} = 0.15 \sqrt{80 g / 12}]$ or $v_{max} = 2 \pi x 0.15 / 0.777$ or $\frac{1}{2} (12/g) v_{max}^2 + mg(0.15)$ $+24 \{0.45^2 + 0.15^2 - 0.6^2\} / (2x0.6) = 0]$ Speed is 1.21ms^{-1}	M1 A1 [2]	For using $v_{max} = An$ or $v_{max} = 2 \pi A/T$ or conservation of energy (5 terms needed)

4 (i)	Loss in PE = $mg(0.5\sin\theta)$	B1	
	[$\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m3}^2 = \text{mg}(0.5 \sin \theta)$] $\text{v}^2 = 9 + 9.8 \sin \theta$	M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$a_{\rm r} = 18 + 19.6\sin\theta$	B1	Using $a_r = v^2/0.5$ For using Newton's second law tangentially
	$[ma_t = mg \cos \theta]$ $a_t = 9.8\cos \theta$	M1 A1 [3]	Tor using received a second law tangentain,
(iii)	[T - mg sin θ = ma _r] T - 1.96sin θ = 0.2(18 + 19.6sin θ) T = 3.6 + 5.88sin θ θ = 3.8	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial i components of velocity for A and B		
	are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
		M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A1	
		M1	For using NEL
	0.75(4-3) = b - a	A1	
		M1	For attempting to find a
	a = 3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
		M1	For using $tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a $(\neq 0)$ only
		[10]	
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for both equ's
			a = 4 M1 as scheme A1
			j component for A is 4ms ⁻¹ B1
			Angle $tan^{-1}(4/4) = 45^{\circ} M1$ as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10}$ (= 14)	B1	
	V	M1	For using Newton's second law with a = dv/dt (3 terms required)
	$[0.125 \text{dv/dt} = 0.125 \text{g} - 0.025 \text{v}]$ $\int_{C} 5 dv \qquad \int_{C} dv$		For separating variables and attempt to
	$\int \frac{5dv}{5g - v} = \int dt$	M1	integrate
	$-5 \ln(5g - v) = t (+A)$	A1	
	$[-5 \ln 35 = A]$	M1	For using $v(0) = 14$
	$t = 5 \ln\{35/(49 - v)\}$	A1	
		M1	For method of transposition
	$v = 49 - 35e^{-0.2t}$	A1	AG
		[8]	
(ii)		M1	For integrating to find x(t)
	$x = 49t + 175e^{-0.2t}$ (+B)	A1	
			For using limits 0 to 3 or for using
	$[x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)]$	M1	x(0) = 0 and evaluating $x(3)$
	Distance is 68.0m	A1	
		[4]	

	<u> </u>		,
7(i)	Gain in EE = $20x^{2}/(2x2)$	B1	
			Accept 0.8gx if gain in KE is
	Loss in GPE = $0.8g(2 + x)$	B1	$\frac{1}{2} 0.8(v^2 - 19.6)$
	$[\frac{1}{2}0.8v^2 = (15.68 + 7.84x) - 5x^2]$	M1	For using the p.c.energy
	$v^2 = 39.2 + 19.6x - 12.5x^2$	A1	AG
		[4]	
(ii)	(a)	M1	For attempting to solve $v^2 = 0$
	Maximum extension is 2.72m	A1	1 0
		[2]	
	(b)		For solving $20x/2 = 0.8g$ or for
			differentiating and attempting to solve
	[19.6 - 25x = 0,		$d(v^2)/dx = 0$ or $dv/dx = 0$ or for
	$v^2 = 46.8832 - 12.5(x - 0.784)^2$	M1	expressing v^2 in the form $c - a(x - b)^2$.
	x = 0.784 or c = 46.9	A1	
			For substituting $x = 0.784$ in the
	$[v_{\text{max}}^2 = 39.2 + 15.3664 - 7.6832]$	M1	expression for v^2 or for evaluating \sqrt{c}
	Maximum speed is 6.85ms ⁻¹	A1	onpression for your or for o your mining ve
	in the second se	[4]	
	(c)	[.]	For using Newton's second law (3 terms
		M1	required) or $a = v \frac{dv}{dx}$
	$\pm (0.8g - 20x/2) = 0.8a$		required, or a - v dv/dx
	or $2v dv/dx = 19.6 - 25x$	A1	
	$a = \pm (9.8 - 12.5x)$		
	or $\ddot{y} = -12.5y$ where $y = x - 0.784$	A1	
	$ a _{\text{max}} = 9.8 - 12.5 \times 2.72 $		For substituting $x = ans(ii)(a)$ into $a(x)$ or
		M1	$y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$
	or $ \ddot{y}_{\text{max}} = -12.5(2.72 - 0.784]$	A1	y = ans(n)(a) = 0.764 mto y (y)
	Maximum magnitude is 24.2ms ⁻²	[5]	
		ا اد	

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹	B1	May be implied
	Vert. comp. of vel. after impact is	D1	1.0
	$\sqrt{5^2 - 4^2} = 3\text{ms}^{-1}$	B1	AG
	Coefficient of restitution is 0.5	B1 [3]	From $e = 3/6$
		ļ	
ii	Direction is vertically upwards	B1	
	Change of velocity is 3 – (-6) Impulse has magnitude 2.7Ns	M1 A1	From $m(\Delta v) = 0.3 \times 9$
	Impuise has magnitude 2.714s	[3]	$110111 m(\Delta V) = 0.3 \times 9$
2 i	Horizontal component is 14N	B1	
			For taking moments for AB about A or B
	00.15 14.15 2V	M1	or the midpoint of AB
	$80 \times 1.5 = 14 \times 1.5 + 3Y$ or $3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or		
	$1.5(80 - Y) = 30 \times 1.5 + 14 \times 1.5 $ or $1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$	A1	
	Vertical component is 33N upwards	A1	AG
		[4]	
ii	Horizontal component at <i>C</i> is 14N	B1	May be implied
	[Vertical component at C is	M1	for using $R^2 = H^2 + V^2$
	$(\pm)\sqrt{50^2-14^2}$]	DM1	For resolving forces at C vertically
	$[W = (\pm)48 - 33]$	A1	
	Weight is 15N	[4]	
3 i		M1	For using the p.c.mmtm parallel to l.o.c.
	$4\times3\cos60^{\circ} - 2\times3\cos60^{\circ} = 2b$	A1	
	b = 1.5	A1	
	j component of vel. of $B = (-3\sin 60^{\circ})$ [$v^2 = b^2 + (-3\sin 60^{\circ})^2$]	B1ft M1	ft consistent sin/cos mix For using $v^2 = b^2 + v_v^2$
	$\begin{bmatrix} v - b + (-3\sin b) \end{bmatrix}$	IVII	For using $V = U + V_y$
	Speed (3ms ⁻¹) is unchanged	A1ft	AG ft - allow same answer following
	[Angle with l.o.c. = $\tan^{-1}(3\sin 60^{\circ}/1.5)$]	M1	consistent sin/cos mix.
	Angle is 60° .	A1ft	For using angle = $\tan^{-1}(\pm v_y/v_x)$
		[8]	ft consistent sin/cos mix
ii	$[e(3\cos 60^{\circ} + 3\cos 60^{\circ}) = 1.5]$	M1	For using NEL
	Coefficient is 0.5	A1ft	ft - allow same answer following
		[2]	consistent sin/cos mix throughout.
<u> </u>		1	

4 i	$F - 0.25v^{2} = 120v(dv/dx)$ $F = 8000/v$ $[32000 - v^{3} = 480v^{2}(dv/dx)]$ $\frac{480v^{2}}{v^{3} - 32000} \frac{dv}{dx} = -1$	M1 A1 B1 M1 A1 [5]	For using Newton's second law with $a = v(dv/dx)$ For substituting for F and multiplying throughout by $4v$ (or equivalent) AG
ii	$\int \frac{480v^2}{v^3 - 32000} dv = -\int dx$ $160 \ln(v^3 - 32000) = -x (+A)$ $160 \ln(v^3 - 32000) = -x + 160 \ln 32000$ or $160 \ln(v^3 - 32000) - 160 \ln 32000 = -500$ $(v^3 - 32000)/32000 = e^{-x/160}$ Speed of m/c is 32.2ms^{-1}	M1 A1 M1 A1ft B1ft B1 [6]	For separating variables and integrating For using $v(0) = 40$ or $[160 \ln(v^3 - 32000)]^{v}_{40} = [-x]^{500}_{0}$ ft where factor 160 is incorrect but +ve, Implied by $(v^3 - 32000)/32000 = e^{-3.125}$ (or = 0.0439). ft where factor 160 is incorrect but +ve, or for an incorrect non-zero value of A
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$ $[T_{\text{max}} = 18 \times 1/1.5]$ Maximum tension is 12N	B1 M1 A1 [3]	For using $T = \lambda x/L$
ii	Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52) Loss in GPE = 2.8 mg (27.44m) [$2.8m \times 9.8 = 11.52$] m = 0.42 (b) $\frac{1}{2}mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2/(2 \times 1.5)$ or $\frac{1}{2}mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$ Speed at M is 4.24 ms ⁻¹	M1 A1 B1 M1 A1 [5] M1 A1ft A1ft [3]	For using EE = $\lambda x^2/2L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point For using the p.c.energy AG For using the p.c.energy KE, PE & EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string

	T	1	
6 i	$[-mg \sin \theta = m L(d^2 \theta/dt^2)]$ $d^2 \theta/dt^2 = -(g/L)\sin \theta$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2 \theta/dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \ \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \ \theta \implies \text{motion is SH}$	M1 A1 [2]	For using $\sin \theta \approx \theta$ because θ is small $(\theta_{\text{max}} = 0.05)$ AG
iii	$[4\pi/7 = 2\pi/\sqrt{9.8/L}]$ $L = 0.8$	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$[\theta = 0.05\cos 3.5 \times 0.7]$ $\theta = -0.0385$ $t = 1.10 \text{ (accept 1.1 or 1.09)}$	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \{ \theta = \theta_0 \sin nt \text{ not accepted unless the } t \text{ is reconciled with the } t \text{ as defined in the question} \}$ ft incorrect $L \{ \theta = 0.05 \cos[4.9/(5L)^{\frac{1}{2}}] \}$ For attempting to find 3.5t ($\pi < 3.5t < 1.5\pi$) for which 0.05cos3.5t = answer found for θ or for using 3.5($t_1 + t_2$) = 2π ft incorrect $L \{ t = [2\pi (5L)^{\frac{1}{2}}]/7 - 0.7 \}$
V	$\dot{\theta}^{2} = 3.5^{2}(0.05^{2} - (-0.0385)^{2}) \text{ or } \\ \dot{\theta} = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\dot{\theta} = -0.1116) \\ \text{Speed is } 0.0893 \text{ms}^{-1} \\ \text{(Accept answers correct to 2 s.f.)}$	M1 A1ft A1ft [3]	For using $\dot{\theta}^2 = n^2(\theta_o^2 - \theta^2)$ or $\dot{\theta} = -n \theta_o \sin nt$ {also allow $\dot{\theta} = n \theta_o \cos nt$ if $\theta = \theta_o \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect L in (iii) or for $\dot{\theta} = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_o \sin nt$ ft incorrect L ($L \times 0.089287/0.8$ with $n = 3.5$ used or from $ 0.35 \sin\{4.9/[5L]^{\frac{1}{2}}\}/[5L]^{\frac{1}{2}} $ SR for candidates who use $\dot{\theta}$ as v . (Max 1/3) For $v = \pm 0.112$

7 i	Gain in PE = $mga(1 - \cos \theta)$	B1	
	$[\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga(1 - \cos\theta)]$	M1	For using KE loss = PE gain
	$v^2 = u^2 - 2ga(1 - \cos\theta)$	A1	
	$[R - mg \cos \theta = m(\text{accel.})]$		
	$R = mv^2/a + mg\cos\theta$	M1	For using Newton's second law radially
		A1	
	$[R = m\{ u^2 - 2ga(1 - \cos\theta) \}/a + mg\cos\theta]$	M1	For substituting for v^2
	$R = mu^2/a + mg(3\cos\theta - 2)$	A1	AG
		[7]	
ii	$[0 = mu^2/a - 5mg]$	M1	For substituting $R = 0$ and $\theta = 180^{\circ}$
11	$\begin{bmatrix} 10 - ma / a - 3mg \end{bmatrix}$ $u^2 = 5ag$	A1	For substituting $K = 0$ and $U = 180$
	$[v^2 = 5ag - 4ag]$ Least value of v^2 is ag	M1 A1 [4]	For substituting for u^2 (= 5 ag) and θ = 180° in v^2 (expression found in (i)) { but M0 if $v = 0$ has been used to find u^2 } AG
iii	$[0 = u^{2} - 2ga(1 - \sqrt{3}/2)]$ $u^{2} = ag(2 - \sqrt{3})$	M1	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i))
	$u^2 = ag(2 - \sqrt{3})$	A1 [2]	Accept $u^2 = 2ag(1 - \cos \pi/6)$

1 0.4(3cos60° – 4) = -I cos θ (= -1) 0.4(3sin60°) = Isin θ (= 1.03920) A1 SR: Allow B1 (max 1/3) for 3cos60° – 4 = -I cos θ and 3sin60° = Isin [tan θ = -1.5 $\sqrt{3}$ /(1.5 – 4);			*
$0.4(3\sin 60^\circ) = I\sin\theta \qquad (= 1.03920) \qquad \text{A1} \qquad \text{SR: Allow B1 (max 1/3) for } \\ 3\cos 60^\circ - 4 = -I\cos\theta \text{ and } 3\sin 60^\circ = I\sin\theta \\ I^2 = 0.4^2[(1.5-4)^2 + (1.5\sqrt{3})^2]] \qquad \text{M1} \qquad \text{For eliminating I or } \theta \text{ (allow following SR case)} \\ \theta = 46.1 \text{ or I} = 1.44 \qquad \qquad \text{M1} \qquad \text{For substituting for } \theta \text{ or for I (allow following SR case)} \\ I = 1.44 \text{ or } \theta = 46.1 \qquad \qquad \text{A1ft} \qquad \text{[7]} \qquad \text{following SR case.} \\ \text{Alternatively} \qquad \qquad \text{M2} \qquad \text{A1ft} \qquad \text{[7]} \qquad \text{following SR case.} \\ \text{Alternatively} \qquad \qquad \text{M3} \qquad \text{For use of cosine rule} \\ I = 1.44 \qquad \qquad \text{M4} \qquad \qquad \text{M5} \qquad \text{For use of factor } 0.4 \text{ (= m)} \\ I = 1.44 \qquad \qquad \frac{\sin\theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or } \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A1} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A2} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A3} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A5} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A6} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A7} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A8} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A9} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A1} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A1} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A2} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A3} \qquad \alpha \text{ mast be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ mast be angle opposite } 1.6; \\ \text{A5} \qquad \qquad \alpha \text{ mast be angle opposite } 1.6; \\ \text{A6} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A7} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A8} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A1} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A1} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A2} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A3} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha \text{ must be angle opposite } 1.6; \\ \text{A4} \qquad \qquad \alpha must be ang$		Δ1	$0.4(3\cos 60^{0} - 4) = 1\cos 0 \qquad (= 1)$
$[\tan\theta = -1.5\sqrt{3}/(1.5-4);$ $\Gamma^2 = 0.4^2[(1.5-4)^2 + (1.5\sqrt{3})^2]]$ $\theta = 46.1 \text{ or } I = 1.44$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I^2 = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^\circ$ $I = 1.44$ $\frac{\sin\theta}{3(or 1.2)} = \frac{\sin 60}{\sqrt{13(or 2.08)}} \text{ or }$ $3\cos 60^\circ - 4 = -I \cos\theta \text{ and } 3\sin 60^\circ = I\sin\theta$ For eliminating I or θ (allow following SR case) Allow for θ (only) following SR case. For substituting for θ or for I (allow following SR case) ft incorrect θ or I; allow for θ (only) following SR case. Alternatively $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$			
$[\tan\theta = -1.5\sqrt{3}/(1.5-4);$ $I^2 = 0.4^2[(1.5-4)^2 + (1.5\sqrt{3})^2]]$ $\theta = 46.1 \text{ or } I = 1.44$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I^2 = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^\circ \text{ or } \text{ 'V'}^2 = 3^2 + 4^2 - 2 \times 3 \times 4 \cos 60^\circ \text{ or } $	$3\cos\theta - 4 = -1\cos\theta$ and $3\sin\theta = 1\sin\theta$	AI	$0.4(3\sin 60^{\circ}) = 1\sin \theta \qquad (= 1.03920)$
$I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5\sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$ $A1$ $A1$ $A2$ $A1$ $A2$ $A3$ $A3$ $A3$ $A3$ $A4$ $A4$ $A3$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$	1		
$I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5\sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$ $A1$ $A1$ $A2$ $A1$ $A2$ $A3$ $A3$ $A3$ $A3$ $A4$ $A4$ $A3$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$			[
$\theta = 46.1 \text{ or } I = 1.44$ $A1 \qquad \text{Allow for } \theta \text{ (only) following SR case.}$ $I = 1.44 \text{ or } \theta = 46.1$ $A1 \qquad \text{For substituting for } \theta \text{ or for } I \text{ (allow following SR case)}$ $ft \text{ incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $following SR \text{ case.}$ $A1 \qquad \text{fit incorrect } \theta \text{ or } I; \text{ allow for } \theta \text{ (only)}$ $following SR \text{ case.}$ $A1 \qquad \text{For use of cosine rule}$ $A1 \qquad \text{M1} \qquad \text{For use of factor } 0.4 \text{ (= m)}$ $A1 \qquad \text{M1} \qquad \text{For use of sine rule}$ $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ $\alpha \text{ must be angle opposite } 1.6;$		3.71	
$I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.44 \text{ or } \theta = 46.1$ $I = 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.6 \cos 60^\circ \text{ or } \theta = $	case)	MI	$I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5\sqrt{3})^{2}]]$
I = 1.44 or θ = 46.1 Alft [7] following SR case) ft incorrect θ or I; allow for θ (only) following SR case. Alternatively I ² = 1.2 ² + 1.6 ² - 2×1.2×1.6cos60° V' ² = 3 ² + 4 ² - 2×3×4cos60° I = 1.44 $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or } $ Alft ft incorrect θ or I; allow for θ (only) following SR case) Alft ft incorrect θ or I; allow for θ (only) following SR case) Alft ft incorrect θ or I; allow for θ (only) following SR case) Alft incorrect θ or I; allow for θ (only) following SR case) Alft incorrect θ or I; allow for θ (only) following SR case) Alft incorrect θ or I; allow for θ (only) following SR case.	Allow for θ (only) following SR case.	A1	$\theta = 46.1 \text{ or } I = 1.44$
I = 1.44 or θ = 46.1 Alft [7] following SR case) ft incorrect θ or I; allow for θ (only) following SR case. Alternatively I ² = 1.2 ² + 1.6 ² - 2×1.2×1.6cos60° V' ² = 3 ² + 4 ² - 2×3×4cos60° I = 1.44 $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or } $ Alft ft incorrect θ or I; allow for θ (only) following SR case) Alft ft incorrect θ or I; allow for θ (only) following SR case) Alft ft incorrect θ or I; allow for θ (only) following SR case) Alft incorrect θ or I; allow for θ (only) following SR case) Alft incorrect θ or I; allow for θ (only) following SR case) Alft incorrect θ or I; allow for θ (only) following SR case.	For substituting for θ or for I (allow	M1	
I = 1.44 or θ = 46.1 A1ft [7] ft incorrect θ or I; allow for θ (only) following SR case. Alternatively I = 1.2 ² + 1.6 ² - 2×1.2×1.6cos60° or 'V' ² = 3 ² + 4 ² - 2×3×4cos60° I = 1.44 $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\sin \theta}{3(or2.08)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\sin \theta}{3(or2.08)} = \frac{\sin \theta}{\sqrt{13(or2.08)}}$ or $\frac{\cos \theta}{3(or2.08)} = \frac{\sin \theta}{\sqrt{13(or2.08)}}$ or $\frac{\cos \theta}{3(or2.08)} = \frac{\sin \theta}{\sqrt{13(or2.08)}}$ or $\frac{\cos \theta}{3(or2.08)} = \frac{\sin \theta}{\sqrt{13(or2.08)}}$	_		
Alternatively $I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ} \text{or} \text{`V'}^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ} \text{I} = 1.44$ $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{or} \text{a must be angle opposite 1.6;}$		A 1 ft	I = 1.44 or Q = 46.1
Alternatively $I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ} \text{or} \text{`V'}^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ} \text{I} = 1.44$ $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{or} \text{a must be angle opposite 1.6;}$	1		$1 = 1.44 \text{ or } \theta = 40.1$
$I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ} $ or ${}^{\circ}V^{\circ 2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ} $ In the second of the second of the second or $I = 1.44$ In the second of the second or $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\cos \theta}{3(or1.2)} = \frac{\cos \theta}{\sqrt{13(or2.08)}}$	following SR case.	[/]	
$I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ} $ or ${}^{\circ}V^{\circ 2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ} $ In the second of the second of the second or $I = 1.44$ In the second of the second or $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\cos \theta}{3(or1.2)} = \frac{\cos \theta}{\sqrt{13(or2.08)}}$		+	Alternatively
$I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ} $ or $V^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ} $ A1 $I = 1.44$ $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\sin \theta}{3(or2.08)} = \frac{\sin 60}{\sqrt{13(or2.08)}}$ or $\frac{\cos \theta}{3(or3.2)} = \frac{\sin 60}{\sqrt{13(or3.08)}}$	For use of cosine rule	М1	Alternativery
$V^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ}$ $I = 1.44$ $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ $A1$ $M1$ For correct use of factor 0.4 (= m) $A1$ $M1$ For use of sine rule $\alpha \text{ must be angle opposite 1.6;}$	1 of use of cosme fule	171 1	$I^2 - 1.2^2 + 1.6^2 - 2 \times 1.2 \times 1.60060^0$
I = 1.44 $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ M1 For correct use of factor 0.4 (= m) A1 M1 For use of sine rule $\alpha \text{ must be angle opposite 1.6;}$		A 1	
$\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ A1 M1 For use of sine rule $\alpha \text{ must be angle opposite 1.6;}$	For connect was of factor 0.4 ()		$V = 3 + 4 - 2 \times 3 \times 4 \times 4 \times 6 \times 6$
$\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ M1 For use of sine rule $\alpha \text{ must be angle opposite 1.6;}$	For correct use of factor 0.4 (= m)		T 144
$\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or }$ $\alpha \text{ must be angle opposite 1.6;}$			1 = 1.44
u must be differ opposite 1.0,	For use of sine rule	MI	
u must be diffic opposite 1.0,			$\frac{\sin \theta}{\sin \theta} = \frac{\sin 60}{\cos \theta}$ or
u must be diffic opposite 1.0,			$3(or1.2) - \sqrt{13(or2.08)}$ or
$\frac{\sin \alpha}{4(or1.6)} = \frac{\sin 60}{\sqrt{13(or2.08)}} $ and $\theta = 120 - \alpha$ A1ft $\frac{(\alpha = 73.9)}{\text{ft value of I or 'V'}}$			
4(or1.6) $\sqrt{13(or2.08)}$ A1ft ft value of I or 'V'			$\frac{\sin \alpha}{\alpha} = \frac{\sin 60}{\sin 60}$ and $\theta = 120 - \alpha$
	ft value of I or 'V'	A1ft	$4(or1.6)$ $\sqrt{13(or2.08)}$ and $\sigma = 120$ d
$\theta = 46.1$ A1			$\theta = 46.1$
		[7]	
For using the principle of conservation of	For using the principle of conservation of		2
M1 momentum		M1	
$2a + 3b = 2 \times 4$ A1		A1	$2a + 3b = 2 \times 4$
M1 For using NEL	For using NEL		
$b - a = 0.6 \times 4$			$b - a = 0.6 \times 4$
[2(b-2.4) + 3b = 8] M1 For eliminating a	For eliminating a		
$\begin{vmatrix} 12(6-2.1) + 36 - 6 \\ b = 2.56 \end{vmatrix}$			
$\begin{vmatrix} v = 2.56 \\ v = 2.56 \end{vmatrix}$ B1ft $\begin{vmatrix} A1 \\ B1ft \end{vmatrix}$ ft $v = b$	$\int ft y = b$		
			V = 2.50
3(i) M1 For using 'mmt of 2W = mmt of T'	For using 'mmt of 2W – mmt of T'		3(i)
$2W(a \cos 45^{\circ}) = T(2a)$ $ M1 For using limit of 2W = limit of 1$	Tor using minit of 2 w — mint of 1		
	AG		
	AU		$\mathbf{w} = \sqrt{2} 1$
Gi) Commonweath (H. W) of force on BC at B are	-		(ii) Commonate (II V) of force and DC of D
(ii) Components (H, V) of force on BC at B are		D 1	
$H = -T/\sqrt{2}$ and $V = T/\sqrt{2}$ -2W B1			$H = -1/\sqrt{2}$ and $V = 1/\sqrt{2}$ -2W
M1 For taking moments about C for BC	For taking moments about C for BC		
$W(a\cos\alpha) + H(2a\sin\alpha) = V(2a\cos\alpha)$ A1		Al	$W(a\cos\alpha) + H(2a\sin\alpha) = V(2a\cos\alpha)$
	For substituting for H and V and reducing		
[W $\cos\alpha$ - T $\sqrt{2} \sin\alpha$ = T $\sqrt{2} \cos\alpha$ -4W $\cos\alpha$] M1 equation to the form X $\sin\alpha$ = Y $\cos\alpha$	Laguation to the form Vaince Vacco		$[W \cos\alpha - T\sqrt{2} \sin\alpha = T\sqrt{2} \cos\alpha - 4W\cos\alpha]$
$T\sqrt{2}\sin\alpha = (5W - T\sqrt{2})\cos\alpha$ A1ft	equation to the form $A \sin \alpha = Y \cos \alpha$	A1ft	$T\sqrt{2} \sin \alpha = (5W - T\sqrt{2}) \cos \alpha$
$\tan \alpha = 4$ A1	equation to the form $\mathbf{A} \sin \alpha = \mathbf{Y} \cos \alpha$	Δ1	
[6]	equation to the form $A \sin \alpha = Y \cos \alpha$	L/V I	$\tan \alpha = 4$

	Alternatively for part (ii)		
	Thermativery for part (n)	M1	For taking moments about C for the whole
	anticlockwise mmt =		E
	$W(a\cos\alpha) + 2W(2a\cos\alpha + a\cos45^{\circ})$	A1	
	$= T[2a\cos(\alpha - 45^{\circ}) + 2a]$	A1	
	$[5W\cos\alpha + \sqrt{2}W =$		For reducing equation to the form
	$T(\sqrt{2}\cos\alpha + \sqrt{2}\sin\alpha) + 2]$	M1	$X \sin \alpha = Y \cos \alpha$
	$T\sqrt{2} \sin \alpha = (5W - T\sqrt{2}) \cos \alpha$	A1ft	
	$\tan \alpha = 4$	A1	
	2	[6]	
4 (i)	$[-0.2(v + v^2) = 0.2a]$	M1	For using Newton's second law
	$[v dv/dx = -(v + v^2)]$	M1	For using $a = v \frac{dv}{dx}$
	[1/(1+v)] dv/dx = -1	A1	AG
(**)		[3]	P · / ·
(ii)	1, (1, -2, (, C)	M1	For integrating
	$\ln (1 + v) = -x (+ C)$	A1 A1	
	$\ln(1+v) = -x + \ln 3$ $[(1 + dx/dt)/3 = e^{-x} \rightarrow dx/dt = 3e^{-x} - 1$	AI	
	$ \Rightarrow \frac{1}{4} \frac$	M1	For transposing for v and using $v = dx/dt$
	$[-e^{x}/(3-e^{x})] dx/dt = -1$	A1	AG
		[5]	
(iii)	$[\ln(3 - e^x) = -t + \ln 2]$	M1	For integrating and using $x(0) = 0$
(222)	$\ln(3 - e^x) = -t + \ln 2$	A1	
	Value of t is 1.96 (or $ln{2 \div (3 - e)}$	A1	
		[3]	
5(i)		M1	For using $EE = \lambda x^2/2L$ and $PE = Wh$
3(1)	Loss of EE = $120(0.5^2 - 0.3^2)/(2 \times 1.6)$	IVII	For using EE = $\lambda x / 2L$ and FE = Wii
	and gain in PE = 1.5×4	A1	
		M1	For comparing EE loss and PE gain
	v = 0 at B and loss of EE = gain in PE (= 6)	1,11	Tor comparing 22 ross and 12 gain
	→distance AB is 4m	A1	AG
		[4]	
(ii)	[120e/1.6 = 1.5]	M1	For using $T = mg$ and $T = \lambda x/L$
	e = 0.02	A1	
	Loss of EE = $120(0.5^2 - 0.02^2)/(2 \times 1.6)$		
	(or $120(0.3^2 - 0.02^2)/(2 \times 1.6)$)	B1ft	ft incorrect e only
	Gain in PE = $1.5(2.1 - 1.6 - 0.02)$	D. 1.2	
	(or 1.5(1.9 + 1.6 + 0.02) loss)	B1ft	ft incorrect e only
	[KE at max speed = $9.36 - 0.72$	N/ 1	For using KE at max speed
	(or $3.36 + 5.28$)] $\frac{1}{2}(1.5/9.8)v^2 = 9.36 - 0.72$	M1 A1	= Loss of EE – Gain (or + loss) in PE
	$\frac{72(1.5/9.8)V}{\text{Maximum speed is } 10.6 \text{ ms}^{-1}}$	A1 A1	
	Maximum speed is 10.0 ins	[7]	
	First alternative for (ii)	ļĿ'-J	
	x is distance AP		
	$[\frac{1}{2}(1.5/9.8)v^2 + 1.5x + 120(0.5 - x)^2/3.2 =$		
	$120 \times 0.5^2 / 3.2$	M1	For using energy at $P = \text{energy at } A$
	KE and PE terms correct	A1	
	EE terms correct	A1	
	$v^2 = 470.4x - 490x^2$	A1	
	[470.4 - 980x = 0]	M1	For attempting to solve $dv^2/dx = 0$
	x = 0.48	A1	
	Maximum speed is 10.6 ms ⁻¹	A1	

	la 11	T	I
	Second alternative for (ii)	N/1	Farmerine Transport
	[120e/1.6 = 1.5]	M1	For using $T = mg$ and $T = \lambda x/L$
	e = 0.02 [1.5 - 120(0.02 + x)/1.6 = 1.5 \ddot{x} /g]	A1 M1	For using Newton's second law For obtaining the equation in the form
	$n = \sqrt{490}$	M1 A1	$\ddot{x} = -n^2 x$, using $(AB - L - e_{equil})$ for amplitude and using $v_{max} = na$.
	a = 0.48 Maximum speed is 10.6 ms ⁻¹	A1 A1	
6(i)	PE gain by $P = 0.4g \times 0.8 \sin \theta$ PE loss by $Q = 0.58g \times 0.8 \theta$	B1 B1 M1	For using KE gain = PE loss
	$\begin{vmatrix} \frac{1}{2}(0.4 + 0.58)v^2 = g \times 0.8(0.58 \theta - 0.4\sin \theta) \\ v^2 = 9.28 \theta - 6.4\sin \theta \end{vmatrix}$	A1ft A1 [5]	AEF
(ii)		1 12]	For applying Newton's second law to P and
(**)		M1	using $a = v^2/r$
	$0.4g \sin \theta - R = 0.4v^2/0.8$	A1	
	$[0.4g \sin \theta - R = 4.64 \theta - 3.2 \sin \theta]$	M1	For substituting for v ²
	$R = 7.12 \sin \theta - 4.64 \theta$	A1	AG
(;;;)		[4] M1	For substituting 1.52 and 1.54 into D(A)
(iii)	R(1.53) = 0.01(48), R(1.54) = -0.02(9) or	1711	For substituting 1.53 and 1.54 into $R(\theta)$
	simply $R(1.53) > 0$ and $R(1.54) < 0$	A1	
			For using the idea that if R(1.53) and R(1.54) are of opposite signs then R is zero (and thus P leaves the surface) for some
	$R(1.53) \times R(1.54) < 0 \implies 1.53 < \alpha < 1.54$	M1 A1 [4]	value of θ between 1.53 and 1.54. AG
7(i)		M1	For using $T = \lambda e/L$
	$T_{AP} = 19.6e/1.6$ and $T_{BP} = 19.6(1.6-e)/1.6$	A1	
	0.5- 3-200 - 12.25(1.6) 12.25	M1	For resolving forces parallel to the plane
	$0.5g \sin 30^{\circ} + 12.25(1.6 - e) = 12.25e$ Distance AP is 2.5m	A1ft A1	
	Distance AF IS 2.3III	[5]	
(ii)	Extensions of AP and BP are 0.9 + x and	[2]	
\/	0.7 - x respectively	B1	
	$0.5g \sin 30^{\circ} + 19.6(0.7 - x)/1.6$		
	$-19.6(0.9 + x)/1.6 = 0.5 \ddot{x}$	B1ft	
	$\ddot{x} = -49x$	B1	AG
	Desta 1 to 0.000 a	M1 A1	For stating k < 0 and using T = $2\pi/\sqrt{-k}$
	Period is 0.898 s	[5]	
(iii)		M1	For using $v^2 = \omega^2(A^2 - x^2)$ where $\omega^2 = -k$
	$2.8^2 = 49(0.5^2 - x^2)$	A1ft	ft incorrect value of k
	$x^2 = 0.09$	A 1	May be implied by a value of x
			ft incorrect value of k or incorrect value of
	x = 0.3 and -0.3	A1ft	x^2 (stated)
		[4]	

1			For triangle with two of its sides marked
			0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		M1	or for using $I = \Delta mv$ in one direction.
	For included angle marked α or for $0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$ For opposite side marked 4/0.8 (or 4) or for	A1	Allow B1 for omission of 0.8
	$-0.8 \times 8.5 \sin \alpha = 4 \sin \beta$	A1	Allow B1 for omission of 0.8 For using the cosine rule or for eliminating
	$\begin{vmatrix} 8.4^2 + 6.8^2 - 2x8.4x6.8 \cos \alpha = 4^2 \\ \alpha = 28.1^{\circ} \end{vmatrix}$	M1 A1ft A1	β ft 0.8 mis-used or not used
		[6]	
2(i)	$[100a = 2aV_B]$ Vertical component at B is 50 N Vertical component at C is 150 N	M1 A1 A1 [3]	For taking moments about A for AB
(ii)		M1	For taking moments about B for BC (3 terms needed) or about A for the whole (4 terms needed)
	$100(0.5a) + (\sqrt{3} \text{ a})F = 150a \text{ or}$ $100a + 100(1.5a) = 150a + (\sqrt{3} \text{ a})F$ Frictional force is 57.7 N Direction is to the right	A1ft A1 B1 [4]	
3(i)	$ \begin{array}{l} u = 4 \\ v = 2 \end{array} $	B1 B1 [2]	
(ii)	mu = ma + mb (or $u = b - a$)	M1 A1	For using the principle of conservation of momentum or for using NEL with e = 1
	u = b - a (or $mu = ma + mb$) $a = 0$ and $b = 4ms^{-1}$	B1 A1ft	ft incorrect u
	Speed of A is 2ms ⁻¹ and direction at 90° to the wall Speed of B is 4ms ⁻¹ and direction parallel to	A1ft	ft incorrect v
	the wall	A1ft [6]	ft incorrect u
4(i)	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	For using Newton's second law $(1^{st} \text{ or } 2^{nd} \text{ stage})$ For attempting to integrate (1^{st} stage) and using $v(0) = 0$ (may be implied by the
		M1	absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$ [v(12) = 1.92]	A1 M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \rightarrow$		For using Newton's second law (2 nd stage)
	$v = t^3/1800 - 12t/50 + C_2$	M1	and integrating
	$[1.92 = 0.96 - 2.88 + C_2]$ $v = t^3/1800 - 12t/50 + 3.84$	M1 A1	For using $v(12) = 1.92$
	v = 171600 - 12030 + 3.64 $v(24) = 5.76 = 3 \times v(12)$	A1	AG
	. ,	[8]	

		1	T
(ii)	Sketch has $v(0) = 0$ and slope decreasing		
	(convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave		
	upwards) for $12 < t < 24$	B1	
	Sketch has v(t) continuous, single valued		
	and increasing (except possibly at $t = 12$)		
		B1	
	with $v(24)$ seen to be $> 2v(12)$		
		[3]	
5(i)	For using amplitude as a coefficient of a		
	relevant trigonometric function.	B1	
	For using the value of ω as a coefficient of t		
	in a relevant trigonometric function.	B1	
	$x_1 = 3\cos t \text{ and } x_2 = 4\cos 1.5t$	B1	
		[3]	
(ii)			For using distance travelled by P ₂ for
\-/		M1	$0 < t < 5\pi/3$ is $5A_2$
1	Part distance is 20m	A1	
1	Tart distance is 2011	111	For subtracting displacement of P ₂ when
	[20 (3.62)]	M1	
	[20 – (-3.62)]		t = 5.99 from part distance.
	Distance travelled by P ₂ is 23.6 m	A1	
	<u> </u>	[4]	
(iii)		M1	For differentiating x ₁ and x ₂
	$\dot{x}_1 = -3\sin t; \ \dot{x}_2 = -6\sin 1.5t$	A1	
			For evaluating when $t = 5.99$ (must use
		M1	radians)
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
	$v_1 = 0.007$, $v_2 = -2.33$, opposite directions	[4]	
	Alternative for (iii):		
			For using $v^2 = n^2(a^2 - x^2)$ (must use radians
		M1	to find values of x)
	$v_1^2 = 3^2 - 2.87^2, v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	
	$[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$		For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \implies v_2 < 0$	M1	changes sign at intervals of T/2 s
			Changes sign at illervals of 1/2 8
(())	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
6(i)	PE loss at lowest allowable point = 25W	B1	D 2//2x
		1	For using EE = $\lambda x^2/(2L)$; may be scored in
		M1	(i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	
			For equating PE loss and EE gain and
	[25W = 20000]	M1	attempting to solve for W
	Value of W is 800	A1	
		[5]	
(ii)	[800 = 32000 x/20]	M1	For using $W = \lambda x/L$ at max speed
()	[222 2200.22]		For using the principle of conservation of
		M1	energy (3 terms required)
	½ (800/9.8)v ²	1411	chorgy (5 terms required)
		A 1	
	$= 800 \times 20.5 - 32000 \times 0.5^{2} / (2 \times 20)$	A1	
	Maximum speed is 19.9ms ⁻¹	A1	
		[4]	
(iii)			For applying Newton's second law to
		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \text{ x } 5/20$	A1	
	Max. deceleration is 88.2 ms ⁻²	A1	
	BOOTE MAN	[3]	
	·	1 [-1	1

7(i)			For using the principle of conservation of
(-)	$[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m } 6^2 = \text{mg}(0.7)]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	
	Coefficient of restitution is 0.695	B1ft	ft 4.9 ÷ speed of P before collision
		[3]	
(ii)			For using the principle of conservation of
	$[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
	3.13(3 1 1 2030)		For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mgcos \theta = mv^2/0.7$	A1	William Wi
	$[T - m9.8\cos\theta = m3.43(3 + 4\cos\theta)/0.7]$	M1	For substituting for v ²
	Tension is $14.7\text{m}(1 + 2\cos\theta)$ N	A1	AG
	Tension is 14.7m(1 + 2cos θ) in	[6]	110
(iii)	$T = 0 \Rightarrow \theta = 120^{\circ}$	B1	
(111)	1 - 0 2 0 - 120		For using $a_r = -g\cos\theta$
			$\{ \text{or } 3.43(3 + 4\cos\theta)/0.7 \}$
		M1	or $a_t = -g\sin\theta$
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ or		or $a_t = -g \sin \theta$
	transverse acceleration is (\pm) 8.49 ms ⁻¹	A1	
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ and		
	transverse acceleration is (\pm) 8.49 ms ⁻¹	B1	
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
			(max. 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43\{3 + 4(-0.5)\} \times 0.5^2 \text{ or}$		
	$V^2 = (-g\cos 120^{\circ} \times 0.7) \times \cos^2 60^{\circ}]$	M1	For using $V = v(120^{\circ}) \times \cos 60^{\circ}$
	$V^2 = 0.8575$	A1	AG
	$[mgH = \frac{1}{2} m(4.9^2 - 0.8575)]$ or		For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2} m(3.43 -$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	

4730 Mark Scheme January 2011

1 i	(-)15cos α = (0 –) 0.5x22 or 15sin β = 0.5x22 Impulse makes angle 42.8° (0.748 rads) with negative x-axis	M1 A1 A1	M1 for using $I = \Delta$ (mv) in 'x' direction or for sketching Δ reflecting $\underline{\mathbf{I}} = m(\underline{\mathbf{v}} - \underline{\mathbf{u}})$ AEF, but angle must be clear
ii	$15\sin \alpha = 0.5v$ or $15\cos \beta = 0.5v$ or $(0.5v)^2 = 15^2 - 11^2$ Correct explicit expression for v Speed is 20.4 ms ⁻¹	M1 A1 A1 [3]	For using $I = \Delta$ (mv) in 'y' direction or using sketched Δ

2	$\frac{1}{2}$ (m)(v ² - 6 ²) = -(m)g x 0.5 in (i) or $\frac{1}{2}$ (m)(v ² - 6 ²) = -(m)g x 1 in (ii)	M1	For using the principle of conservation of energy in (i) or (ii)
	$v^2 = 26.2 \text{ in (i) and } 16.4 \text{ in (ii)}$	A1	soi
	$T = 0.4v^{2}/0.5 \text{ in (i) or} T + 0.4g = 0.4v^{2}/0.5$	M1 A1	For using Newton's second law with $a = v^2/L$. M1 for either attempt, A1 for both right
	Tension is 21.0N in (i) (20.96) 9.2N in (ii)	A1 A1 [6]	

3 i	2.8V = 1.4x72	M1	For taking moments about <i>Q</i> for <i>PQ</i> or for using symmetry
	Vertical component at <i>P</i> is 36 N	A1 [2]	
ii	36 + N = 72 + 54	M1	For resolving forces vertically on both rods
	Normal component at <i>R</i> is 90 N	A1	AG
		[2]	
iii			For taking moments about <i>Q</i> for <i>QR</i> or
	1.44F = 1.2x90 - 0.8x54 or		about <i>P</i> for the whole structure (all terms
	72x1.4 + 54x3.6 + 1.44F = 90x4	M1	needed)
	with not more than 1 error in either case	A1	
	Equation correct and leading to $F = 45$	A1	
	For using $F = \mu R$	M1	
	Coefficient is 0.5	A1	
		[5]	

4			For using the principle of conservation of
i	0.4(7x0.6) - 0.3x2.8 = 0.4a + 0.3b	M1	momentum
		A1	
	0.7(7x0.6 + 2.8) = b - a	M1	For using $e(\Delta u) = \Delta v$
		A1	-
		M1	For eliminating a from equations
	Speed of <i>B</i> is 4ms ⁻¹	A1	
		[6]	
ii	a = (-)0.9	B1	
	Component perp. to l.o.c. is 5.6	B1	
			For attempting to find α - the angle between
	$\tan \alpha = 5.6/0.9$	M1	the direction of motion of A after collision
	$\alpha = 80.9^{\circ}$	A1	and the l.o.c. to the left, or $90^{\circ} - \alpha$
	Angle turned through is 46.0° (0.803°)	A1ft	$126.9^{\circ} - \alpha$
		[5]	

5			For using $T = \lambda e/L$ and resolving forces
i	2.45e/0.5 = 0.05g	M1	vertically
	(e = 0.1)	A1	accept use of 0.1 to show both sides equal
			to 0.49
	Distance from O is $0.5 + 0.1 = 0.6$ m	A1	AG
		[3]	
ii	$mg - T = m \ddot{x}$	M1	For using Newton's second law with 3 terms
	$0.05g - 2.45(0.1 + x)/0.5 = 0.05 \ddot{x}$	A1	
	$\ddot{x} = -98x$	A1	AG
	x = 90x	[3]	
iii	a = 0.075	B1	
	$n = 7\sqrt{2}$ oe	B1	accept 9.90
	$x = 0.075\cos(7\sqrt{2}t)$	M1	For using $x = a \cos nt$ oe
	x(0.2) = -0.0298	A1	-
	$v = -0.075(7\sqrt{2})\sin(7\sqrt{2}t)$	M1	For differentiating $x = a \cos nt$ and using it
	$v(0.2) = -0.681 \rightarrow \text{velocity is } 0.681 \text{ms}^{-1}$	A1ft	ft incorrect a and/or n
	upwards	A1	If from $v^2 = n^2(a^2 - x^2)$ the direction must
	ap wards	[7]	be clearly established

6 i	$112e/4 = 3.5 \times 9.8 \times \frac{40}{49}$ $V^{2} = 2\times 8\times (4+1)$ $V^{2} = 80$	M1 A1 M1 A1	For using $mg\sin\theta$ and $\lambda e/L$ For using $s = 4 + e$ and $a = 8$ in $v^2 = 2as$, or by energy
	$0.5\sqrt{80} = (0.5 + 3.5)u$ Initial speed of combined particles is $\sqrt{5} \text{ ms}^{-1}$	M1 A1 [6]	For using the principle of conservation of momentum AG
ii	Gain in EE = $(112/(2x4))\{(X+1)^2 - 1^2\}$ Loss of KE = $\frac{1}{2}(0.5 + 3.5) \times \frac{5}{4}$ Loss of PE = $(0.5 + 3.5) \times 9.8 \times \frac{40}{49}X$	M1 A1 B1 B1	For using $EE = \lambda x^2/2L$
	$14(X^2 + 2X) = 2.5 + 32X$ $28X^2 - 8X - 5 = 0$	M1 A1 [6]	For using the principle of conservation of energy AG
OR	$T - mg \sin\theta = -ma$ $\frac{112(x+1)}{4} - 4g \frac{40}{49} = -4a$ $\int (7x-1)dx = -\int vdv (+c)$	M1 A1 M1	For use of $F = ma$ allow one sign slip for A1 Using $a = v \frac{dv}{dx}$ and integrating
	$\frac{7x^2}{2} - x = -\frac{v^2}{2} + c$ $c = \frac{5}{8}$	A1 A1	
	$28X^2 - 8X - 5 = 0$	A1 [6]	AG Convincingly

7			E ' NI / 11 '/1
7 i	0.2 2/2000 0.2 (1 /1)	3.41	For using Newton's second law with
1	$0.2g - v^2/2000 = 0.2v(dv/dx)$	M1	a = v(dv/dx)
	$\left(\frac{400v}{3920 - v^2}\right) \frac{dv}{dx} = 1.$	A1	AG Convincing, with no slips.
	$\sqrt{3920-v^2} dx$	[2]	
ii		M1	For separating variables and integrating
	$-200 \ln(3920 - v^2) = x + (A)$	A1	
	$-200 \ln(3920) = A$	M 1	For using $v(0) = 0$
	3920		
	$x = 200 \ln \left(\frac{3920}{3920 - v^2} \right)$	A1	
	$e^{x/200} = 3920/(3920 - v^2)$	3.71	F
	$e^{x} = 3920/(3920 - v)$ $v^{2} = 3920(1 - e^{-x/200})$	M1	For using inverse ln process
	v = 3920(1 - e) $0 < e^{-x/200} \rightarrow v^2 < 3920$	A1	AC Commissionals day on assured anomaly
	$0 < e^{-v} + \sqrt{v} < 3920$	B1	AG Convincingly – dep on correct answer
		[7]	
iii	Using $0.2g - v^2/2000 = 0.2a$	M1	
	v = 40	A1	
	Gain in KE = $\frac{1}{2}$ 0.2x1600 (=160J)	B1ft	
	3920		
	$x = 200 \ln(\frac{3920}{3920 - 1600}) \ (= 104.90)$	B1ft	
	5, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,		
	0.2g x (104.9) - 160	M1	For using $WD = loss of PE - gain in KE$
	Work done is 45.6 J	A1	
		[6]	
OR	Using $0.2g - v^2/2000 = 0.2a$	M1	
	v = 40	A1	
	$x = 200 \ln(\frac{3920}{3920 - 1600}) = 104.90$	B1ft	
	3720 1000		
	$WD = \int \frac{v^2}{2000} dx + c$		
	J 2000	M1	Use of WD = $\int F dx$ and subst for v^2
	$= \int \frac{3920}{2000} (1 - e^{-x/200}) dx$		Coo of 11D - J ran and substitutiv
	$\int \int \frac{1}{2000} (1-c)^{-1} dx$	A1	
	$= 3920 / 2000(x + 200e^{(-x/200)} - 392$		
	,	A1	
	Work done is 45.6 J	[6]	

1	[$5\cos\theta - 4 = 0$] $\cos\theta = 0.8$ [$I = 0.3(5\sin\theta - 0)$ or $\sin\theta = I \div (0.3 \times 5)$] I = 0.9	M1 A1 M1 A1 [4]	For using $v_x - u_x = 0$ or for a triangle sketched with sides $I/0.3$, 4 and 5 with angles θ and 90° opposite I/m and 5 respectively. AG For using $I = m(\Delta v)$ in 'y' direction or $I = \sqrt{\left(\left(0.3 \times 5\right)^2 - \left(0.3 \times 4\right)^2\right)}$ M1
---	--	-----------------------------	---

2 i	(1.0. 2.0) P. (2.2. 0.0) 200. 1.5.400	M1	For taking moments about <i>C</i> for the whole for M1 need 3 terms; allow 1 sign error and/or 1 length error and/or still including sin/cos
	$(1.8 + 3.2)R_B = (3.2 + 0.9)x300 + 1.6x400$ Force exerted on <i>AB</i> is 374 N	A1 A1	
	Force exerted on AC is 326 N	B1 [4]	or for taking moments about <i>B</i> for whole $(1.8 + 3.2)R_C = (1.8 + 1.6)x400 + 0.9x300$ giving force on <i>AC</i> first: M1A1A1A1
ii		M1	For taking moments about A for AB for M1 need 3 terms, allow 1 sign error and/or 1 length error and/or still including sin/cos
	0.9x300 + 1.2T = 1.8x374	A1	or moments about A for AC
	Tension is 336 N	A1 [3]	1.6x400 + 1.2T = 3.2x326
iii	Horizontal component is 336 N to the left $[Y = 374 - 300]$ Vertical component is 74 N downwards	B1ft M1 A1ft [3]	For resolving forces on AB vertically

Give credit for part (ii) done on the way to part (i) if not contradicted in (ii).

3 i	$0.25(dv/dt) = -0.2v^{2}$ $0.25 \int v^{-2} dv = -0.2t(+C)$	M1 dep M1	For using Newton's second law with $a = dv/dt$. Allow sign error and/or omitting mass For separating variables and attempting to integrate (ie get v^{-1} and t).
	$-v^{-1}/4 = -t/5 + C$ $[1/4v = t/5 + 1/20]$ $v = \frac{5}{4t+1} \text{oe}$	A1 M1 A1 [5]	For using $v(0) = 5$ to obtain C
ii	$x = (5/4)\ln(4t + 1) + B$ Subst $v = 0.2$ in (i) to find t Obtain $x(6) = 1.25 \ln 25$ oe (4.02359) Average speed is 0.671 ms^{-1}	M1 A1 M1 M1 A1 [5]	For using $v = dx/dt$ and integrating Implied by $t = 6$ May be written as $\frac{5}{12} \ln 5$
	Alternatively $\ln v = -0.8x + B$ Subst $v = 0.2$ in (i) to find t Obtain $x(0.2)$ (= 1.25 ln(5/0.2) oe (4.0239)) Average speed is 0.671 ms ⁻¹	M1 A1 M1 M1 A1	For using $mv(dv/dx) = -0.2v^2$, separating variables and integrating. Allow sign error and/or omitting mass. Implied by $t = 6$ May be written as $\frac{5}{12} \ln 5$

4 i	[-0.2x2 $\ddot{\theta} = 0.2g\sin\theta$] $\frac{d^2\theta}{dt^2} = -4.9\sin\theta$ For small θ , $\sin\theta \approx \theta$ and $\ddot{\theta} = -4.9\theta$ represents SHM	M1 A1 B1 [3]	For using Newton's second law transversely. Allow sign error and/or sin/cos error and/or missing 0.2, <i>g</i> or <i>l</i> . AG
ii	θ = 0.15cos($\sqrt{4.9} t$) oe t = 1.04 at first occasion t = 1.80 at second occasion	M1 A1 A1 M1 A1 [5]	For using $\theta = A\cos(nt)$ or $A\sin(nt + \varepsilon)$. Allow \sin/\cos confusion for using $t_1 + t_2 = 2\pi/n$
iii	Angular speed is (-) 0.297 rads s ⁻¹ Linear speed is (-) 0.594ms ⁻¹	M1 A1 A1ft [3]	For using $\dot{\theta} = -An \sin(nt)$ oe. Allow sign error and/or ft from θ in (ii).

In (ii) & (iii) allow M marks if angular displacement/speed has been confused with linear.

5	$[\sin \gamma = 0.96 \div 1.2]$	M1	For using $v_B \sin \gamma = u_B \sin \beta$
i	$\sin \gamma = 0.8$	A1	
		[2]	
ii		M1	For using the principle of conservation of momentum. Allow sign error and/or $u_A\cos\alpha$ (instead of 2) for M1.
	$(m)2 - (m)u_B\cos\beta = (m)v_B\cos\gamma$	A1	allow $u_A \cos \alpha$ (instead of 2) for A1
		M1	For eliminating u_B or v_B . Allow with cos
	$2 = v_B(0.6 + 0.28 \div 1.2)$	A1	Or $2 = 0.28u_B + 0.72u_B$
	$v_B = 2.4, u_B = 2$	A1	
		[5]	
iii	$[(2 + u_B \cos \beta)e = v_B \cos \gamma]$	M1	For applying Newton's exp'tal law. Allow sign error and/or $u_A\cos\alpha$ (instead of 2) for M1.
	$(2 + 2 \times 0.28)e = 2.4 \times 0.6$	A1ft	ft u_B and v_B only
	$(2 + 2 \times 0.28)e = 2.4 \times 0.6$ $e = \frac{9}{16} \text{ or } 0.5625$	A1 [3]	
iv		[5]	For using $\frac{1}{2}(m)v^2 = 6.5(m)$ and
1,	$[(y-component)^2 = 13 - 4]$	M1	$(y$ -component) ² = v^2 - 2^2 . Allow 1 slip.
	$v_A = (y\text{-component})_{\text{before}} = 3$	A1	T sy
	-	[2]	

6		M1	For using PE gain = $W(h_Y - h_X)$
i	PE gain = $6 \times 0.8 (\sqrt{3}/2 - 1/\sqrt{2})$		Shown fully, with no slips
	$=2.4(\sqrt{3}-\sqrt{2})$	A1	AG
		M1	For using EE loss = $\lambda (e_X^2 - e_Y^2)/2l$. Allow
	EE loss = $\frac{9}{2(\pi/10)}$ [(0.8 $\pi/4$ - $\pi/10$) ² –		slips for M1.
	$(0.8\pi/6 - \pi/10)^2$	A1	Fully correct
	EE loss = $45 \pi [(0.2 - 0.1)^2 - (0.4 - 0.3)^2 \div 9]$ = $5 \pi (9 \times 0.01 - 0.01) = 40 \pi / 100 = 0.4 \pi J$	A1	No slips in simplification
	$= 3 \pi (9 \times 0.01 - 0.01) = 40 \pi / 100 = 0.4 \pi $	[5]	AG
ii			
	$T = 9 (0.8 \pi / 6 - \pi / 10) \div (\pi / 10)$	B1	
		M1	For attempting to show that
	$W\sin\theta - T = 6 \times \sin(\pi/6) - 90 \times (0.2 \div 6) = 0$		$W\sin\theta - T = 0$ at Y by subst $\theta = \pi/6$
	→ transverse acceleration is zero	A1	AG No slips
		M1	For using KE gain = EE loss – PE gain at
			Y. Need 3 terms, allow sign errors and/or
	$\frac{1}{2}(6/9.8)v^2 = 0.4 \pi - 2.4(\sqrt{3} - \sqrt{2})$	A1	g omitted.
	Maximum speed is 1.27 ms ⁻¹	A1	
	Mammam speed to 1.27 ms	[6]	

7 i		M1	For using the principle of conservation of energy. Allow sign error, sin/cos; need 3 terms.
	$\frac{1}{2}mv^2 = \frac{1}{2}m5.6^2 - mg0.8(1 - \cos\theta)$	A1	
	$v^2 = 15.68(1 + \cos\theta)$	A1	AG No slips
	$T - mg\cos\theta = mv^2/r$	M1	For using Newton's second law. Allow sign error and/or sin/cos and/or <i>m</i> omitted
	$[T - 0.3g\cos\theta = 0.3x15.68(1 + \cos\theta)/0.8]$	A1 M1 A1	For substituting for v^2
	Tension is $2.94(3\cos\theta + 2)$ N oe	[7]	
ii	θ is 131.8° (or 2.3 rads) Accept 132° (exact)	M1 A1	For putting $T = 0$ and attempting to solve accept $\theta = \cos^{-1}(-2/3)$
	v is 2.29	B1 [3]	$\sqrt{15.68/3}$ exact
iii	[speed = $ v \cos(180 - \theta) = \sqrt{15.68/3} \times (2/3)$]	M1	For using 'speed at max. height = horiz. comp. of vel. when string becomes slack'
	Speed at greatest height is 1.52 ms^{-1} $0.3gH = \frac{1}{2} \ 0.3(5.6^2 - 1.52^2)$	A1	For using the principle of conservation of
	0.3gH = ½ 0.3(5.6 – 1.52) Greatest height is 1.48 m	M1 A1 [4]	energy 40/27 exact
	ALTERNATIVE for (iii)	<u>r.</u> :1	
	$[0 = 2.286^{2} \times (1-4/9) -19.6y,$ $H = 0.8(1 + 2/3) + y]$ $H = 1.3333 + 0.1481 (4/3 + 4/27)$ Greatest height is 1.48 m (40/27)	M1 A1	For using $0^2 = \dot{y}^2 - 2gy$ and $H = 0.8\{1 + \cos(180 - \theta)\} + y$
	[$\frac{1}{2}m(2.286^2 - \text{speed}^2) = mg \times 0.1481$ speed ² = 2.286 ² - 19.6 × 0.1481] or [$\frac{1}{2}m(5.6^2 - \text{speed}^2) = mg \times 1.481$ speed ² = 5.6 ² - 19.6 × 1.481] Speed at greatest height is 1.52 ms ⁻¹	M1 A1	For using the principle of conservation of energy

	uestio	n Answer	Marks	Guidance	
1	(i)	Triangle of velocities/momentum	IVIAINS	For right angled triangle with at least one side correctly shown (2.5, 2, 20 <i>I</i> or 0.125, 0.1, <i>I</i>)	
		All correct	M1	or vector equation $(v_1, v_2) =$ (0, 20 <i>I</i>) + (2, 0) with at least 3 of the 4 components on the RHS correct	
		All correct Use of Pythagoras' theorem to find <i>I</i>	A1 M1	$400I^2 + 2^2 = 2.5^2$ or $I^2 = 0.125^2 - 0.1^2$	may be implied by $v_1^2 + v_2^2 =$
		Use of Fydiagolas theorem to find I I = 0.075	A1	4001 + 2 - 2.3 011 - 0.123 - 0.1	$2.5^2 \text{ or } \sin \alpha = 0.6$
		1 = 0.075	[4]		2.5 of since = 0.0
1	(ii)	Components of velocity parallel to the wall			
		before and after are 2 and 2	B1		may be implied
		Components of velocity perpendicular to the	-		
		wall before and after are (-) 1.5 and 1.5e	B1	Farmering 2 , 2 , 5 March 1 , 2 , 2 , 5 March 1 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3	
		$[2^2 + (1.5e)^2 = 5]$	M1	For using $v_1^2 + v_2^2 = 5$ Must be perp to wall	
		Coefficient is $\frac{2}{3}$ or 0.667	A1		
			[4]		
2	(i)	$2mu\cos\alpha - mu\cos\alpha = 2ma + mb$	M1	For using the p.c.m. parallel to l.o.c.	allow sign errors, $m/2m$, \sin/\cos
		$0.5(u\cos\alpha + u\cos\alpha) = b - a$	M1	For using NEL parallel to l.o.c.	allow sign errors, e left in
			A1	for both p.c.m and NEL correct & consistent	
		Comp of B's velocity along l.o.c. is $u\cos\alpha$	Alft	dep on M1M1 gained	1 1 2 211
		Establishing B's speed unchanged	A1	by stating vel perp l.o.c. still $u\sin\alpha$, hence	or by showing speed is still <i>u</i> condone 'vertical' in this part
			[5]	result, dep on all previous marks	condone vertical in this part
2	(ii)	a = 0	[5] B1	may be shown in (i)	
	(11)	correct interpretation of direction of A	B1	perp to l.o.c.	condone 'vertical' for
		Total marpianion of direction of 11		Prop to more	perpendicular, accept sketch, and
		Direction of B is at angle α to l.o.c, with an	B1		refs to sketch in (i)
		indication that removes ambiguity (eg in			
		sketch)			
			[3]		

O	uestio	n	Answer	Marks	Guidance	
3	(i)	<u> </u>	71101101	M1	For using Newton's second law and	allow missed – sign / stray g /
	(1)			1,11	a = v(dv/dx)	missed 0.3
			$0.3v(dv/dx) = -1.2v^3$	A1	a range	imosea o.e
			$[-v^{-1} = -4x + A]$	M1*	For finding dv/dx in terms of v and attempting	allow $A/v = Bx + C$ oe
				1,11	to integrate	
			$\left[-u^{-1} = 0 + A \right]$	*M1	For using $v(0) = u$	
				1,11		
			и			
			$v = \frac{u}{4ux + 1}$	A1	AG	
			+ux+1	[5]		
3	(ii)				For using $v = dx/dt$, separating the variables	$-1.2v^3=0.3 \text{ d}v/\text{d}t$ and attempt to
	(11)		$\int (4ux + 1)dx = \int udt$	M1*	and attempting to integrate one side	int one side M1*
			$2ux^2 + x = ut + B$	A1	and attempting to integrate one side	$8t = 1/v^2 - 1/u^2$ and subst for v
						A1
			$[(2 \times 4 - 9)u = -2]$	*M1	For using $x(0) = 0$ (may be implied by absence	then as main scheme
					of B) and $x(9) = 2$ – dep on int being done	
			u=2	A1		
				[4]		
4	(i)		EE gain = $44.1x^2 \div (2x0.75)$	B1		allow use of $(e + x)$ for x
			PE loss = $1.8g(0.75 + x)$	B1	ignore signs	_
			$[x^2 - 0.6x - 0.45 = 0]$	M1	For using EE gain = PE loss	$44.1x^2$ -26.46x-19.845=0 allow
						sign errors
			Extension is 1.03 m	A1		1.0348469
				[4]		
4	(ii)			M1	For using $T = \lambda x/L$	
			$\frac{44.1 \times 1.03}{0.75} - 1.8 \times 9.8 = -1.8 \ddot{x}$	M1	For using Newton's 2 nd law	allow missed g , m , sign error
			${0.75}$ $-1.8 \times 9.8 = -1.8 x$			
				A1ft	ft their '1.03' from (i)	allow sign error
			Acceleration is -24.0 ms ⁻²	A1	direction must be clear	1.03 → - 23.84666
				[4]		1.035 → - 24.01

Q	uestio	n Answer	Marks	Guidance	
5	(i)		M1	For taking moments about B for BC	must be 2 terms involving T , L , 84.5 and $\sin/\cos \beta$
		$84.5 \times 12L/13 = T(2L)$	A1	must use $12/13$ for $\cos \beta$,
		Tension is 39 N	A1		
			[3]		
5	(ii)			For resolving forces on BC horiz or vert	must involve their T and \sin/\cos
			M1		β
		$X = 39 \times 5/13$	A1 FT	explicit expression for X	
		$Y = 84.5 - 39 \times 12/13$	A1 FT	explicit expression for <i>Y</i>	
		X is to the left and Y is upwards	Alcao	AG (numerical values – must be correct) dep M1A1A1	accept on diagram
			[4]		
5	(iii)		M1*	For taking moments about A for AB	must involve 3 terms, 84.5, 48.5,
					15,sinα and cos α;
		$84.5 \times L\cos\alpha + 48.5 \times 2L\cos\alpha = 15 \times 2L\sin\alpha$	A1		allow sign errors, L/2L
		$[\tan \alpha = \frac{84.5 + 97}{30}]$	*M1	For obtaining a numerical expression for $\tan \alpha$	similar scheme for those who
					take moments about A for whole
		$\alpha = 1.41^{\circ} \text{ or } 80.6^{\circ}$	A1		system
			[4]		
6	(i)	$[0.4\pi=2\pi/n]$	M1	For using $T = 2 \pi / n$	
		n=5	A1		
			M1	For using $v_{\text{max}} = n(OA)$	
		Distance <i>OA</i> is 0.8 m	A1		
			[4]		
6	(ii)	$[x = 0.8\cos(5\times1)]$	M1	For using $x = a \cos nt$	
		x = 0.227	A1		TI 6 2 2/2 2 3 3 4 1
		$[\dot{x} = -0.8 \times 5\sin(5\times1)]$	M1	For using $\dot{x} = -an\sin nt$	Use of $v^2 = n^2 (a^2 - x^2) M1$
		Velocity is 3.84 ms ⁻¹	A1		Direc needs to be shown for A1
			[4]		

Q	uestio	n Answer	Marks	Guidance	
6	(iii)	t and x for one point	B2	Values of t are = 0.257, 0.372, 0.885	$0.4\pi - 1$, $1 - 0.2\pi$, $0.6\pi - 1$
		t and x for second point	B1	Values of x are 0.227, -0.227 , -0.227	
		t and x for third point	B1		ignore ref to point when $t = 1$
		correctly stating precisely 3 points	B1		can show on graph
				sc all 3 x values B2	
				all 3 t values B2	
				one t value B1	
				one x value B1	
		If B1 or B0 scored (out of first 4) on above	(M1)	For $t = 1 \approx 0.8T \implies 3/4T < 1 < 4/4T$ or equiv	
		scheme, allow, subject to max mark 2,	(A1)		
		Number of occasions is 3	[5]		
7	(i)	Tension in string	M1	For using $T = \lambda x/L$	
		$T = mg\sin\alpha$	B1		
		For using $e = R\alpha - 2R/3$	B1	$\begin{pmatrix} 2R \end{pmatrix}$	
				$mg \sin \alpha = 1.2mg \left(Ra - \frac{2R}{3} \right) \div \frac{2R}{3}$	
		$1.8\alpha - \sin \alpha - 1.2 = 0$	A1	AG establish result	By iteration
		Finding f(1.175) and f(1.185)	M1		$\alpha = (1.2 + \sin \alpha)/1.8 \text{ M}1$
		correctly	A1	≈ -0.008 , and $\approx +0.0065$	start [1, 2], and 1 iteration A1
		correct conclusion	A1	AG α = 1.18 correct to 3 significant figures	at least 1 more iteration, and
			[7]		conclusion 1.18(0427) A1
7	(ii)	Direction is towards O	B1		
			[1]		
7	(iii)		M1*	For using $EE = \lambda e^2 \div (2L)$ and $PE = mgh$	
		Gain in EE = $1.2mg(1.18R - 2R/3)^2 \div (2x2R/3)$	A1		
		PE loss = mgR(cos2/3 - cos1.18)	A1	ignore signs	allow α for 1.18 for A1A1
			M1	For using $\frac{1}{2} mv^2 = PE loss - EE gain$	allow sign errors
		$v^2 =$			
		$2gR[\cos 2/3 - \cos 1.18 - 0.9(1.18 - 2/3)^2]$	A1		need 1.18 here
			*M1	For using acceleration = v^2/R	If candidates use $mR\ddot{\theta}$ use
		Acceleration is 3.29 ms ⁻² .	A1		equivalent scheme
			[7]		

Q	uestion	Answer	Marks	Guidance	
1	(i)	$[40d = 30 \times 2]$	M1	For taking moments about <i>B</i> for <i>BC</i>	
		Distance is 1.5 m	A1		
			[2]		
	(ii)	30 = 0.75 R	B1		
		Horizontal component on AB at B is 40 N to	B1		
		the left			
		For resolving forces on BC vertically, or	M1	$Y + 30 = 40$, or $40 \times \frac{1}{2} = Y \times 2$	
		taking moments about C		Accept directions on diagram, if not contradicted in text	
		Vertical component on AB at B is 10 N	A1	SR A1 if both magnitudes correct but directions wrong/not stated	
		down			
			[4]		
	(iii)	(M1	For taking moments about A for AB	
		$(+/-)10 \times 2 + 60 \times 0.8d = (+/-)40 \times 1.5$	A1 FT	FT magnitudes of components at B; need to use ' $x = d\cos\theta$ '	
		Distance is 0.833 m	A1	1 . 4 S ADG (50 001 40 0.5 00 4 54	101 1.5
			[3]	May see moments about A for ABC (60 x $0.8d + 40$ x $3.5 = 30$ x $4 + 40$	
	(:)		D.1	moments about B for AB – need to get equation with only ' d ' unknown	n for M1
2	(i)	Since plane is smooth impulse is	B1		
	(::)	perpendicular to plane(so $\theta = 15$)	[1] M1		
	(ii)	Use of $v^2 = (u^2) + 2 \times g \times 2.5$			
		$v = 7 \text{ ms}^{-1}$	A1		
		after impact:			
		Speed parallel to plane is 7sin15°	B1	1.81(173)	
		$u = 7\sin 15^{\circ} / \cos 60^{\circ}$	M1	Allow sin/cos errors	
		u = 3.62	A1	470 - 470 - 470 - 500	
		$I = 0.45(7\cos 15^{\circ} + u\sin 60^{\circ})$	M1	Allow $\sin/\cos \text{ errors or } I = 0.45(7 \cos 15^\circ + 7\sin 15^\circ \tan 60^\circ)$	
		I = 4.45	A1	4.45477 May see $e = 0.464$	
		On Formation of this male which sides 2.15 (0.45)	[7]	Need 2 compated december and 1 compate and 2	
		Or For using a triangle with sides 3.15 (0.45	M1	Need 2 correct sides and 1 correct angle All correct	
		x 7), <i>I</i> and 0.45 x <i>u</i> (or 7, I/0.45 and <i>u</i>) and correct angles 135°, 15° and 30°	A1	OR $I\cos 15^\circ = 3.15 + 0.45 u\cos 45^\circ$ M1	
		Use of sin rule or cos rule (correct)	M1	$I\sin 15^\circ = mu\cos 45^\circ$ B1	
		u = 3.62	A1	Solve sim equations M1, dep attempt at two comps of	. 1
		I = 3.02 I = 4.45	A1	Answers A1A1	1

			3.7	0.11
	Question	Answer	Marks	Guidance
3	(i)		M1	For using N's 2^{nd} law with $a = v \frac{dv}{dx}$; 3 terms
		$v \mathrm{d}v/\mathrm{d}x = g - 0.0025v^2$	A1	
		$\int \frac{vdv}{g - 0.0025v^2} = \int dx$	M1	For correctly separating variable and attempting to integrate
		$\int g - 0.0025v^2 - \int dx$		
		$-200\ln(g - 0.0025v^2) = x (+ A)$	A1	
		$A = -200 \ln g$	M1*	Attempt to find A from $B \ln(C - Dv^2)$
		$[g - 0.0025v^2 = ge^{-0.005x}]$	*M1	For transposing equation to remove ln
		$v^2 = 400g(1 - e^{-0.005x})$	A1	
		$0 < e^{-0.005x} \le 1 \implies v^2$ cannot reach 400g	B1	dependent on getting other 7 marks.
		ie cannot reach 3920		Need '0 <' oe
			[8]	
	(ii)	$v^2 = 400g(1 - e^{-0.5})$	M1	For substituting for x and evaluating v must have $v^2 = A + Be^{-Cx}$ for (i), but not neces
				in this form
		Speed of P is 39.3 ms ⁻¹	A1	
			[2]	
4	(i)		M1	For using the pce condone sin/cos and sign errors; need KE before and after and
				difference in PE
		$\frac{1}{2}mv^2 + mg(0.6)(1 - \cos\theta) = \frac{1}{2}m4^2$	A1	
		$v^2 = 4.24 + 11.76\cos\theta$	A1	AG
			M1	For using Newton's 2 nd law, condone sin/cos and sign erorrs; 3 terms needed
		$R - 0.45g\cos\theta = 0.45v^2/0.6$	A1	
		$R = 3.18 + 13.23\cos\theta$	A1	
			[6]	
	(ii)		M1	For using $R = 0$
		$\cos\theta = -3.18/13.23$	A1 FT	-0.24036 or $-106/441$ or $\theta = 103.9^{\circ}$ ft from $R = A + B\cos\theta$, where $A, B \neq 0$
		$[v^2 = 4.24 - 11.76 \times 3.18/13.23]$	M1	For substituting for $\cos \theta$
		Speed is 1.19 ms ⁻¹	A1	CAO without wrong working
			[4]	

	Question	Answer	Marks	Guidance
5	(i)	[0.8mgx/0.78 = mg(5/13)]	M1	For resolving forces and using $T = \lambda x / L$ at equilibrium position
		x = 0.375	A1	Accept 1.155 for $e + l$
		$PE = mg(0.78 + 0.375) \times 5/13$	B1 FT	FT value of x
		$EE = 0.8mg \times 0.375^2 \div (2 \times 0.78)$	B1 FT	FT value of x
		$[\frac{1}{2} mv^2 = m(4.353 0.7067)]$	M1	For using $\frac{1}{2}mv^2 = PE loss - EE gain$
		Maximum speed is 2.70 ms ⁻¹	A1	
			[6]	
		OR at extension x		
		$PE = mg(x + 0.78) \times \frac{5}{13}$	B1	
		$0.8mgx^2$	B1	
		$EE = \frac{0.8mgx^2}{2 \times 0.78}$		
		$mg(x+0.78) \times \frac{5}{13} = \frac{1}{2}mv^2 + \frac{0.8mgx^2}{2 \times 0.78}$	M1	For using $\frac{1}{2}mv^2 = PE loss - EE gain$
		$v^2 = -10.05x^2 + 7.53x + 5.88$		$v^{2} = -\frac{40 \times 9.8}{39} x^{2} + \frac{98}{13} x + \frac{9.8 \times 3.9 \times 2}{13}$
		$v^2 = -10.05(x^2 - 0.749x - 0.585)$		$v^{2} = -\frac{392}{39}(x^{2} - \frac{3}{4}x - \frac{3 \times 3.9 \times 2}{40})$
		for attempting to complete square	M1	
		$v^2 = -10.05((x - 0.375)^2 - 0.726)$	A1	$v^2 = -\frac{392}{39}((x-\frac{3}{8})^2 - 0.725625)$
		Max speed is 2.70 ms ⁻¹	A1	
				Note, after getting equation for v^2 , can instead Differentiate v^2 wrt x M1 Establish max at $x = 0.375$ A1
				Max speed 2.70 ms ⁻¹ A1

4730 Mark Scheme June 2012

Question	Answer	Marks	Guidance
(ii)		M1*	For using PE loss = EE gain
	$mg(0.78 + x) \times 5/13 = 0.8mgx^2 \div (2 \times 0.78)$	A1	or $mg(x) \times 5/13 = 0.8mg(x - 0.78)^2 \div (2 \times 0.78)$ if $PO = x$ or
			$mg(x+0.78+0.375) \times 5/13 = 0.8mg(x+0.375)^2 \div (2 \times 0.78)$ if $PO = x + 0.78 + 0.375$
	$[x^2 - 0.75x - 0.585 = 0 \text{ if } x \text{ is extension}]$	*M1	For arranging in quadratic form and attempting to solve All nec terms required
	x = 1.2268 so Distance is 2.01 m	A1	$[x^2 - 2.31x + 0.6084 = 0 \text{ if } PO = x]$ $[20x^2 = 14.5125, \text{ if } PO = x + 0.78 + 0.375]$
		[4]	[x = 2.0068] $[x = 0.8518]$
	OR put $v = 0$ in v^2 equation from above	M1A1ft	
	Solve to get $x = 1.23 (+0.78) = 2.01 \text{ m}$	M1A1	

(Question	Answer	Marks	Guidance
6	(i)		M1	For using $\frac{1}{2}m(u^2-v^2) = 7.56$ and solving for v; must use '5', allow sign error/missing $\frac{1}{2}$, missing m.
		$\frac{1}{2} \times 2(5^2 - v^2) = 7.56$ $(v^2 = 17.44)$	A1	
		Speed is 4.18 ms ⁻¹	A1	Do not award if this is not candidate's final answer.
			[3]	
	(ii)	$v_{Ay} = u_{Ay} = 5\sin\alpha = 4$	B1	
		$[v_{Ax}^2 + 4^2 = 17.44 \Rightarrow v_{Ax}^2 = 1.44]$	M1	For using $v_{Ax}^2 + v_{Ay}^2 = 17.44$
		$v_{Ax} = \pm 1.2$ and v_{Ax} must be less than 0.8		
		→Component has magnitude 1.2 ms ⁻¹ and		
		direction to the left	A1	
			[3]	
	(iii)		M1	For using the pcm parallel to loc must use 5cosα, 2, 0.8 and '1.2', 4 terms or
				equivalent, allow sign errors, condone one mass missing
		$2 \times 3 - m \times 2 = 2 \times (-1.2) + m \times 0.8$	A1 FT	FT incorrect v_{AX}
		m=3	A1	CAO
			[3]	
	(iv)	[e(3+2) = (1.2+0.8)]	M1	For using NEL with their '1.2' and 5cosa, 2 and 0.8; allow sign errors. Must be right
				way up
		e = 0.4	A1	
			[2]	

Questio	n	Answer	Marks	Guidance
7	(i)		M1	For using EPE = $\lambda x^2/2L$ for both strings for one position
		$E_{(AP=2.9)} = 120 \times 0.9^2 / 4 + 180 \times 0.1^2 / 6$		
		=(24.3+0.3) and		
		$E_{(AP=2.1)} = 120 \times 0.1^2/4 + 180 \times 0.9^2/6$		
		= $(0.3 + 24.3)$ \rightarrow same for each position	A1	24.6 seen twice
		Conservation of energy $\rightarrow v = 0$ when AP		Need to point out that $v = 0$ when $AP = 2.1$ or $KE = 0$
		= 2.1, string taut here so taut throughout		
		motion – oe,	B1	Dep on M1A1
	/••×		[3]	
	(ii)	$T_A = 120(0.5 + x)/2, T_B = 180(0.5 - x)/3$	B1	soi
		[(30 - 60x) - (30 + 60x) = (+/-)0.8a]	M1	For using Newton's 2 nd law; allow omission of 0.8
		a = -150x	A1	With no wrong working
	····		[3]	CYP 61 2 1
	(iii)	SHM because $a = -k$ (where $k > 0$)	M1	SHM because $a = -\omega^2 x$ or in words
		$[T = 2\pi / \sqrt{150}]$	M1	For using $T = 2 \pi / n$; must follow from (ii)
		Time interval is 0.257 s	A1 FT	FT π ÷ candidate's n 0.256509
			[3]	
	(iv)	$[x = 0.4 \cos(\sqrt{150} \times 0.6) = 0.194]$	M1	For using $x = a\cos(0.6n)$, where <i>n</i> follows from (ii) and <i>a</i> is numerical.
		[distance = $4a + (a - 0.194)$]	M1	For using $T < 0.6 < 1.25$ $T \Rightarrow$ distance = $4a + (a - x)$; may be implied by $1.6 <$
				distance < 2.0
		Distance travelled is 1.81 m	A1	CAO, no wrong working
			[3]	
	(v)		M1	For using $\dot{x} = -an \sin(0.6n)$, where <i>n</i> follows from (ii)
				Or using $v^2 = n^2(a^2 - x^2)$, where <i>n</i> follows from (ii) and <i>x</i> follows from (iv)
				or using $\dot{x} = an \cos(0.6n)$ if $x = a\sin(0.6n)$ used in (iv), where <i>n</i> follows from (ii)
		Speed is 4.29 ms^{-1} .	A1	Condone –4.29
		•	[2]	

		Answer	Marks	Guidan	ce
1			M1		Use of cos rule; condone + for -/ missing 2/ missing '0.6'; angle as 'θ' for M1
		$I^2 = 2.04^2 + 0.9^2 - 2x2.04x0.9x \frac{15}{17}$	A1	And attempt to square root	Condone + for -
		1.32 (N)	A1	CAO	(1.3159)
		46.8(°) with initial direction of ball	M1 A1	Correct use of sin rule from their diagram oe CAO OR $0.9 + I\cos\theta = 0.6x3.4x15/17$ M1 $I\sin\theta = 0.6x3.4x8/17$ M1 square and add to find I^2 ; or divide to find θ M1 I, θ A1 A1 CAO	Can be in terms of $I \alpha$ and θ (46.8476) (0.8176 rads) Accept 46.7 from using $I = 1.32$ Allow missing 0.6 and/or sign or trig error for these 2 marks, then M0A0A0
2	(i)	Vel unchanged perp to L o C $0.6\sin 30^{\circ} = v\cos 30^{\circ}$ $0.2\sqrt{3} \text{ (ms}^{-1})$	M1 M1 A1 [3]		Stated or used Allow 1 sign or trig error (0.34641)
2	(ii)	Use momentum equation $0.3m - 0.6m\cos 30^{\circ} = am + 0.2\sqrt{3}m\cos 60^{\circ}$ (a =) 0.393 to left	M1 A1ft A1 [3]	Follow through on <i>v</i> Direction must be clearly stated or implied from working. WWW	Allow their <i>v</i> ; allow sign errors / omission of <i>m m</i> 's not necessary; (0.39282) Away from B/opp direction to before
2	(iii)	Use of NLR $(0.2\sqrt{3})\cos 60^{\circ} - (-0.393) = e(0.6\cos 30^{\circ} + 0.3)$ 0.691	M1 A1ft	Ft on a and v	Allow sign error and/or trig error (0.69082 or 0.6905679)

		Answer	Marks	Guidan	ce
3	(i)	Use of $F = ma$, using $v \frac{dv}{dx}$	M1*		Allow sign error / 0.3 omitted
		$0.3v \frac{dv}{dx} = 1.5x$ Attempt to rearrange and integrate $v = \sqrt{5}x \mathbf{AG}$	*M1	$0.3v^2 = 1.5x^2(+c)$ correct derivation WWW	No need for <i>c</i> . At least one side integrated correctly
3	(ii)	Integrate to find x in terms of t $ \ln x = \sqrt{5}t + c $ $ x = e^{\sqrt{5}t} $ $ v = \sqrt{5} e^{\sqrt{5}t} $	M1 A1 A1 A1	$dx/x = \sqrt{5}dt$ and int 1 side correctly	Need to separate variables No need for c for first 2 marks Must include showing $c = 0$.
		OR Integrate to find v in terms of t $\frac{dv}{dt} = \sqrt{5}dt$	[4] M1	Use jn $0.3 \frac{dv}{dt} = 1.5x$ and int 1 side correctly	No need for c for first 2 marks
		$\ln v = \sqrt{5}t + c$ $\ln v = \sqrt{5}t + \ln(\sqrt{5})$ $v = \sqrt{5} e^{\sqrt{5}t}$	A1 A1 A1	CAO	Must include showing $c = \ln(\sqrt{5})$

		Answer	Marks	Guidan	ce
4	(i)	Conservation of energy	M1 M1		Need 4 terms; allow sign & trig errors Both KE or both PE correct
		$\frac{1}{2}0.4v^2 + \frac{1}{2}0.6v^2 + 0.4ga\sin\theta - 0.6ga\theta = 0$	A1		completely correct
		$v^2 = 3.92a(3\theta - 2\sin\theta)$	M1 A1	Attempt to find v^2 dep both earlier M1s \mathbf{AG}	Allow with sign and trig errors No errors
		F = ma radially for P	M1*		Allow sign and trig errors
		$0.4g\sin\theta - R = \frac{0.4v^2}{a}$	A1		
		$R = -4.704\theta + 7.056\sin\theta$	*M1 A1 [9]	Manipulation attempted, leading to $a\theta$ + $b\sin\theta$	Allow sign and trig errors $2.352(-2\theta + 3\sin\theta)$
4	(ii)	Using $R = 0$ $(k =) \frac{2}{3}$	M1 A1 [2]	$0 = -4.704\theta + 7.056\sin\theta$	Must be from correct expression in (i)
5	(i)	2.5g = 36.75 e/3 $e = 2$	M1 A1	P in equilibrium	Allow missing g
		$v^{2} = 0^{2} + 2g(3 + e)$ $v = 7\sqrt{2}$ $1 \times v = 3.5 V$	M1 A1 M1		May be implied by $v^2 = 98$
		Combined speed = $2\sqrt{2}$ (ms-1)	A1 [6]	AG	Convincing derivation, no errors

		Answer	Marks	Guidan	ce
5	(ii)	change in PE is $3.5gX$ change in KE is $0.5x3.5 (2\sqrt{2})^2$ change in EE is $36.75(X+2)^2/(2\times3)-36.75\times2^2/(2\times3)$ Use conservation of energy	B1 B1 M1 A1	$\frac{34.3X}{14}$ $\frac{36.75(X+2)^{2}}{2\times3} = \frac{36.75\times2^{2}}{2\times3} + 3.5gX + \frac{3.5}{2}V^{2}$	Allow sign errors / omission of 2; Allow 'x' or 'x + 5' for 'x + 2'; 2 terms or difference Allow sign errors; at least PE, KE, EE term
		$35X^2 - 56X - 80 = 0$	A1 [6]	AG 2×3 2×3 2×3 2×3	Convincing derivation, no errors may see $36.75X^2 - 58.8X - 84 = 0$
6	(i)	Moments about C for CD $Wl\sqrt{3}/2(\cos 30^\circ) = Ql\sqrt{3}(\cos 30^\circ)$ (Q =) W/2 Resolve vert	M1 A1 A1 M1	AG	allow M if sin/cos wrong
		$(R=) \frac{3}{2}W$	A1 [5]	CAO	
6	(ii)	X = 0 Resolve vert for CD or AB Y = W/2 Vertically downwards	B1 B1* *B1 [3]	Y + Q = W or Y + W = R	

		Answer	Marks	Guida	ance
6	(iii)	Moments about C for AB $Pl\cos 30^{\circ} + Fl\cos 30^{\circ} = Rl\sin 30^{\circ}$ Use P in terms of F Find F in terms of F , or in terms of F $\mu = (F/R) = \sqrt{3/6}$ OR Moments about F F F F F F F F	M1 A1 M1 A1 [5] M1 A1 [M1 A1 [M1 A1 M1 A1	Correct $F = P \text{ or other correct 2nd step}$ $F = \frac{\sqrt{3}}{4}W$ Accept decimal answers from 0.288675	Allow M if sin/cos wrong or sign errors; need all terms Allow if missing term above Or getting 'their' F oe, ie putting $F = \mu R$ in moment equation. Allow M if sin/cos wrong or sign errors; need all terms May have X term if not 0 in (ii)
		$\mu = (F/R) = \sqrt{3/6}$	A1	Accept decimal answers from 0.288675	
7	(i)	Use of energy equation $0.5 \text{ m } (0.3)^2 = mx9.8x0.8x(1 - \cos \theta)$ $\theta = 0.107$	M1 A1 A1 [3]	No errors AG	Allow M1 if sign error and/or 9.8 missing and/or missing <i>m</i> or <i>l</i> 0.107194171
7	(ii)	Use $F = ma$ $\ddot{\theta} = -12.25 \ \theta$ small θ Use of $T = \frac{2\pi}{\omega}$ T = 1.80	M1 A1 B1 M1	$m \times 9.8 \sin\theta = -m \times 0.8 \ \ddot{\theta}$ Dep on having seen acc = $k\sin\theta$ or sight of $\omega = 3.5$	allow M1 if sign error, or 9.8 missing Allow fraction Rigorous $\operatorname{accept} \ \frac{4\pi}{7} \ (1.795195)$

4730 Mark Scheme January 2013

	Answer			Guidance		
7	(iii)	identifying amplitude as 0.107 Use of $(\dot{\theta}) = 0.107 \text{x} 3.5 \text{x} \cos(3.5t)$ Use of $\dot{\theta} = -0.25$ t = 0.658 Use of $\theta = 0.107 \sin(3.5t)$	B1 M1 A1 A1 M1	or $sin(3.5t+\varepsilon)$, ε not 0 Consistent angle or length ft from velocity equation (matches, ignore	ft from (i) ft for a and ω ; allow sign error (0.6576339)	
		$(\theta =) 0.0797 \text{rads}$	A1 [6]	sign) accept 5.20°	(0.0796678 or 0.079576)	

C	Question	n Answer	Marks	Guida	nce
1		Use of $T = \frac{\lambda e}{l}$	M1	Attempt at one tension; allow use of <i>x</i>	allow 2 <i>l</i> for M1
			A1	$\frac{20(d-0.4)}{0.4}$ or $\frac{30(d-0.6)}{0.6}$	either term seen, accept in terms of x
		Weight = tension 1 + tension 2	M 1		condone Wg and W/g
			A 1	100 = 50d - 20 + 50d - 30	fractions and brackets removed
		(AW =) 1.5 (m)	A1		
			[5]		
2	(i)	Use of correct formula	M1	$v^2 = 0^2 + 2 \times 9.8 \times 0.4$	or by energy
		Vert speed imm before bounce = $2.8 \text{ (m s}^{-1})$	A1		
		Time between bounces = 0.286 (s) (2/7)	B1		
			[3]		
2	(ii)	Use of their t in a correct formula	M1	$0 = u + 9.8 \times 0.5(t)$ Allow their value of t	or -u = u - 9.8t
		Vert speed imm after bounce = $1.4 \text{ (m s}^{-1})$	A1		
		Coeff of rest = 0.5	B1ft	Their values for v after/ v before	must be worked out to fraction or decimal; $0 \le e \le 1$
			[3]		
2	(iii)	Imp = change of mom	M1	$I = 0.3 \times (v) + 0.3 \times (u)$ Allow their u, v	allow sign errors for M1, allow if answer implies use of their values
		I = 1.26 (N s)	A1	CAO	
			[2]		
3	(i)	Use of $F = ma$	M1	$\frac{3}{2}t - 1 = 0.2\frac{\mathrm{d}v}{\mathrm{d}t}$	allow sign errors or <i>m</i> omitted
		Integrate correctly	A1	$v = \frac{15}{4}t^2 - 5t(+c)$	allow if c missing or wrong
		$v = \frac{15}{4}t^2 - 5t + 0.8$	A1		oe
			[3]		

Q	Questio	n	Answer	Marks	Guida	nce
3	(ii)		Use vel = 0.8	M1	$\frac{15}{4}t^2 - 5t + 0.8 = 0.8$	ft their (i)
			t = 1.33 (s) or 1 1/3 (s)	A1	must come from correct equation for v	Accept 4/3
				[2]		
3	(iii)		Integrate to find x	M1*	At least 2 terms with powers increased by 1	
			$x = \frac{15}{12}t^3 - \frac{5}{2}t^2 + 0.8t$	A1	Need to state $c = 0$, or use limits	
			Solve for $x = 0$	*M1		
			t = 1.6 (s) or 0.4 (s)	A1	Both answers needed; must be from correct work to find equation	Ignore $t = 0$
				[4]		
3	(iv)		x(3) - x(2)	M1	Allow for $x(2)$ or $x(3)$ worked out from (iii)	13.65 or 1.6
			Distance is 12.05 (m)	A1 [2]		Accept 12 or 12.1
4	(i)		Conservation of momentum	*M1	Must have 4 terms	allow sign errors, $\cos\theta$ omitted
	(1)		Conservation of Momentum	A1	$0.1 \times 3 + 0.2 \times 1 \times \cos \theta = 0.1 \times a + 0.2 \times b$	a and b are vel components of A and B
						to right, respectively, after collision
			Newton's experimental law	*M1	Must have 4 terms and 0.8	allow sign errors, $\cos\theta$ omitted
				A1	$b - a = -0.8(1 \times \cos \theta - 3)$	
			Attempt to solve their 2 sim eqns	M1*	Dep both previous M marks	allow 1 slip
			0.12 in same direction as before	A1	Direction may be implied by working	withhold if direction stated to left
				[6]		
4	(ii)		b = 2.04	B1	Must be seen/used in (ii)	
			vel of B perp to line of centres = 0.8	B1	$(1 \times \sin \theta)$	
			Direction of <i>B</i> after collision makes angle	M1	$\tan \varphi = 0.8/2.04;$	Allow with their 0.8 and 2.04 (b from
			21.4° with line of centres	A1	or 0.374 rads	(i)); allow $\tan \varphi = 2.04/0.8$, if angle clear, leading to 68.4° for A1
			Angle turned through by <i>B</i> is 31.7°	A1ft	or 0.554 rads; allow +/-	$53.1(3) - \varphi$, 0.927 – 0.374 rads
			angle to the discountry by	[5]	52 5155 1 7445, 4116 W	φ, σ.σ. τ.α.σ

C	Question	Answer	Marks	Guid	lance
5	(i)	Use of energy equation at A and B	M1	3 terms needed $mg0.6\cos\frac{\pi}{6} = mg0.6\cos\theta + \frac{1}{2}mv^2$	allow sign error, missing $m / g / r$
		F = ma radially	A1 M1 A1	$mg\cos\theta - R = \frac{mv^2}{0.6}$	allow if θ replaced by $\varphi + \pi/6$ allow sign error, missing m / g
		Use of $R = 0$ $\cos TOB = \frac{\sqrt{3}}{3} AG$	M1 A1	May be incorporated in previous step Completely correct	not given if decimals used for angle.
			[6]		
5	(ii)	Use of $\sqrt{3/3}$ in 'correct' equation in (i)	M1	$mg0.6\cos\frac{\pi}{6} = mg0.6 \times \frac{\sqrt{3}}{3} + \frac{1}{2}mv^{2}$ or $mg\frac{\sqrt{3}}{3} = \frac{mv^{2}}{0.6}$	equation must have gained M1 in (i) but allow restart here
		1.84 (m s ⁻¹)	A1 [2]	3 0.6	
5	(iii)	Use of $F = ma$ tangentially	M1	$mg\sin\theta = ma$ seen	allow missing m/g , – sign; allow M1
		$8.00 (\text{m s}^{-2})$	A1 [2]		if angular accel found
6	(i)	Moments about B for equilibrium of BC	M1	$2Wl\cos 60^{\circ} + F2l\sin 60^{\circ} = R2l\cos 60^{\circ}$	3 moment terms, condone sin/cos errors and missing <i>l</i> . Need trig terms for M1
		$W + \sqrt{3} F = R$ AG	A1	Must be formula for <i>R</i>	correct, with sin/cos evaluated
			[2]		

	Questio	n	Answer	Marks	Guida	nce
6	(ii)		Moments about A for equilibrium of whole system	M1	At least one of <i>F</i> and <i>R</i> terms must involve lengths of both rods	At least 3 moment terms, condone sin/cos errors, sign errors and <i>l/2l</i> confusion/missing. Wrong use of forces at <i>B</i> gets M0
				A1	$Wl\cos 30 + 2W(2l\cos 30 + l\cos 60) + F(2l\sin 60 + 2l\sin 30) = R(2l\cos 30 + 2l\cos 60)$	4 terms, accept sin/cos errors and <i>l/2l</i> confusion/missing and sign errors for A1
				A1	sin/cos left in, but correct	
			$W\left(\frac{5\sqrt{3}}{2}+1\right)+F\left(\sqrt{3}+1\right)=R\left(\sqrt{3}+1\right)$	A1	fully correct, oe. Mark final answer	accept $5.33W + 2.73F = 2.73R$, $W\left(\frac{13}{4} - \frac{3\sqrt{3}}{4}\right) + F = R$
					Allow full credit for candidates who work out internal forces at B and work correctly from there.	$Eg 3R = \sqrt{3}F + 7.5W$
				[4]		
6	(iii)		Solving 2 sim equations to eliminate F or R	M1	Both equations must involve W , F and R	allow slips in working
				A1	$F = \frac{3\sqrt{3}}{4}W$	F = 1.299 W
				A1	$R = \frac{13}{4}W$	R = 3.25 W
			Use $F = \mu R$ to find μ	M1	At any point	
			$(\mu =)\frac{3\sqrt{3}}{13} (0.39970)$	A1		Accept 0.4 if with correct working $5.33(R - 1.73F) + 2.73F = 2.73R$ $2.6R = 6.52F$
					Or eliminate W M1A1A1	2.01 0.021
					Use $F = \mu R$ M1	
					cao A1	
				[5]		

C	Questio	n	Answer	Marks	Guida	nce
7	(i)		Use of $F = ma$ when string stretched	M1	Must have mg – tension term (involving 39.2 m , 0.8 and x) = ma	allow if sign errors; x could be length or ext of string, or from eq ^m pos.
					$mg - \frac{39.2m(x - 0.8)}{0.8} = m\ddot{x}$	$mg - \frac{39.2mx}{0.8} = m\ddot{x} \text{ leads to}$
				A1	$\ddot{x} = -49(x-1)$	$\ddot{x} = -49(x - 0.2)$
						$mg - \frac{39.2(x+0.2)}{0.8} = m\ddot{x}$ leads to
						$\ddot{x} = -49x$
			Show $x = 1$ is centre of SHM or that $x = 1$ is equilibrium position.	B1	and state about $x = 1$	Convincingly
				[3]		
7	(ii)		By energy	M1	Must be PE term and EE term	Allow for missing '2', wrong 'g' or inconsistent lengths
				A1	$mg(0.8+e) = \frac{39.2me^2}{2 \times 0.8}$	Or $mgh = \frac{39.2m(h-0.8)^2}{2 \times 0.8}$ and
						h = 0.8 + e
						$2.5e^2 - e - 0.8 = 0$
			e = 0.8 satisfies this equation AG	A1	Or by solving quadratic in e	Convincingly
					Allow full credit if done correctly from $v^2 = \omega^2(a^2 - x^2)$	Allow integration of $v \frac{dv}{dx} = g - 49x$
				[3]		

	Question	Answer	Marks	Guida	nce
7	(iii)	For SHM, $\omega = 7$	B1		To be awarded if seen in (i) or (iv)
		a = 0.6	B1		or seen or used here
		Correct use of appropriate SHM distance equation	M1	$-0.2 = 0.6 \cos(7t) \text{ or } -0.2 = 0.6 \sin(7t)$	Allow +0.2, allow their a and ω
		t = 0.272(9476) from bottom ($x = 1.6$) to $x = 0.8$	A1	Could be 0.0485 + 0.224	
		t = 0.404(061) from O to $x = 0.8$	B1	Or $\frac{2\sqrt{2}}{7}$	May be seen first
		Time to reach lowest point = 0.677 s	A1ft	('0.273' + '0.404')	
			[6]		
7	(iv)	Use of $v = -a\omega\sin\omega t$ or $a\omega\cos\omega t$	M1	Must ft from their 'x' equation in (iii), or shown here	Allow use of their a and ω , sign error
		$v = -0.6 \times 7\sin 7t$	A1	or $0.6 \times 7\cos 7t$	
		Use of $t = 0.8 - 0.677 = 0.123$ after bottom point	B1ft	Or use of $t = 0.3475$ in 'cos' version	Must be between 0 and 0.8
		v = 3.19 (3.185677)	A1	(-)3.187	Do not allow if direction stated to be down.
			[4]		

	Answer		Marks	Guidance	
1	(i)	realising impulse must be in same direction as velocity, or opposite max speed 2.8 (m s ⁻¹) min speed 1.2 (m s ⁻¹)	M1 A1 A1 [3]	0.8 +/- 0.6/0.3 - 1.2 is wrong	various methods
	(ii)	Impulse momentum diagram $\cos \theta = \frac{0.6^2 + 0.24^2 - 0.75^2}{2 \times 0.6 \times 0.24}$ $\theta = 120^{\circ} \text{ (2.098 rad)}$	M1 A1 M1	Triangle with sides labelled 0.24, 0.6 and 0.75 or 0.8, 2 and 2.5 accept 59.8° (1.04 rad)	Allow M1 if positions wrong. Diagram must be correct. $v_x = 0.8 + 2\cos\theta$ M1 either $v_y = 2\sin\theta$ and correct diag A1 both Square, add, giving $1.61 = 3.2\cos\theta$ M1 $120.(21)A1$
2	(i)	angle shown correctly By energy $ \frac{30(d - 0.6)^2}{2 \times 0.6} = 48 \times d $ $ 25d^2 - 78d + 9 = 0 $ or $30d^2 - 93.6d + 10.8 = 0$ $ (d =) 3 \text{ (m)} $	A1 [4] M1* A1 *M1 A1 [4]	consistent with their θ ; dep M1A1M1 Attempt at elastic energy get 3 term quadratic and attempt to solve ignore $d = 0.12$, unless given as answer	Allow M1 for $\frac{30y^2}{(2)\times0.6} = kd$ $\frac{30x^2}{2\times0.6} = 48(x+0.6)$ allow 1 slip or $25x^2 - 48x - 28.8 = 0$ (x =) 2.4 leading to $(d =) 3$
	(ii)	Use $F = ma$ $48 - \frac{30 \times (3 - 0.6 - 1.3)}{0.6} = (\pm) \frac{48}{g} a$ (a =) (+/-) 1.43 upwards	M1 A1ft A1 A1 [4]	ft their '3' 1.4291666 depends on <i>a</i> being right	allow missing g , allow 1.3 or 0.6 to be omitted Using energy: $a = v \frac{dv}{dx} = \frac{g}{48} (50x - 72) \text{ M1A1}$

Answer		Marks	Guidance		
3	(i)	Using conservation of momentum along loc $0.1 \times 2.8 + 0.4 \times 1 \times 0.8 = 0.4 \times b$ Using NEL $b - 0 = -e(1 \times 0.8 - 2.8)$ e = 0.75	M1 A1 M1 A1 A1 [5]	3 (or 4) terms, correct dimensions Vel diff after = e x vel diff before	Allow sign errors, (sin/cos) may see $b = 1.5$ Allow $\pm e$
	(ii)	$b(perp) = 0.6$ $\tan \beta = \frac{b(perp)}{\text{their } 1.5},$ angle turned through is $36.9^{\circ} - \beta$ $= 15.1^{\circ} (0.262 \text{ rad})$	B1 M1* *M1 A1 [4]	β = 21.8°; ft 1.5 from (i) Must be 36.9° – their β (soi)	May be on diagram 21.8014(0.381 rad) 36.86989 15.068 scB1 for 165° after B1M1
4	(i)	Use $F = mv \frac{dv}{dx}$ $-4v = \frac{dv}{dx}$ $-4x = \ln v + c$ $0 = \ln 2 + c$ $\ln \frac{v}{2} = -4x$ $v = 2e^{-4x}$	M1 A1 M1 M1 A1 [5]	expression for $\frac{dv}{dx}$ required get (+/-) $Ax = \ln v + c$ valid attempt to find c need a step leading to given answer	Allow sign error, missing m or g inc
	(ii)	$e^{4x} dx = 2 dt$ $\frac{1}{4} e^{4x} = 2t + c$ $\frac{1}{4} = 0 + c$ $e^{4x} = 4(1 + \frac{1}{4})$ $x = \frac{1}{4} \ln 5$	M1* A1 *M1 *M1 A1 [5]	Write v as $\frac{dx}{dt}$ and separate variables must have c or use limits valid attempt to find c or subst limits find x when $t = 0.5$ - need to remove exp; allow even if no c Accept 0.402(359)	$dv/4v^{2} = -dt$ $\frac{1}{v} = 4t + \frac{1}{2}$ $\frac{dx}{dt} = \frac{2}{8t+1} \text{ OR } t = 0.5 \text{ gives } v = 0.4$ $x = \frac{1}{4}\ln(8t+1) + c \text{ OR } -4x = \ln 0.2$ $x = \frac{1}{4}\ln 5$
5	(i)	Take moments about A for whole body $Wx2L\cos 60^{\circ} + 2Wx6L\cos 60^{\circ} = Rx8L\cos 60^{\circ}$ $R = 1.75W$ $S = 1.25W$	M1 A1 A1 B1 [4]	Correct 3 terms needed; dim correct cos60° may be omitted at least 1 correct step to show given answer	Allow sign errors, W/2W, cos/sin, R is reaction at C S is reaction at A For less efficient methods, M1 can only be earned when equation with one unknown, R, is reached.

	Answer		Marks	Guidance	
	(ii)	Take moments about B for equil of BC $TxL\sin 60^{\circ} + 2Wx2L\cos 60^{\circ} =$	M1*	Correct 3 resolved terms needed; dim correct; or for <i>BA</i> TxLsin60° + Wx2Lcos60° =	allow sign errors, W/2W, cos/sin,
		1.75Wx4Lcos60°	A1	1.25Wx4Lcos60°	
		solve to get	*M1	1120771120000	
		$T = \sqrt{3}W$	A1 [4]	accept $T = 1.73W$	
	(iii)	Resolve vertically for AB			
		Y + 1.25W - W = 0	M1		Weight and normal term must be for same rod
		Y = 0.25W, downwards	A1CAO	direction must be clear	
		$X = \sqrt{3}W$ to left	B1ft [3]	direction must be clear	
6	(i)	$\frac{1}{2}mv^2 = mg \times 0.8(1 - \sin 30^\circ)$	M1	Or with '5 m ' if for Q	allow g missing for M1.
		$v = 2.8 \text{ m s}^{-1}$	A1		Might see $v^2 = 0.8g$
		Speed of P and Q equal	B1ft	soi	
		Use conservation of momentum	D16	F4 1 34	
		5mx2.8 - mx2.8 = 5mq + mp Use of NEL	B1ft M1	Ft on velocity	p is vel of P , q is vel of Q , both to left Allow $\pm e$
			Alft	Ft on velocity	Allow ± e
		p-q = -0.95(-2.8-2.8) $p = 6.3 \text{ m s}^{-1}$	A1	supporting work required for AG	
		$q = 0.98 \text{ m s}^{-1}$ Q moves to left	A1 [8]	direction must be clear	
		2			
	(ii)	By energy for <i>P</i> at top	M1	must have 3 terms	allow g missing, sign error
		$\frac{1}{2}m6.3^2 = \frac{1}{2}mv^2 + mg \times 1.6$ $v^2 = 8.33$	A1		
		$v^2 = 8.33$	A1	Soi	
		Use $F = ma$ at top	M1	must have 3 terms	allow g missing, sign error
		$mg + R = m \times \frac{8.33}{0.8}$	Alft	their v^2	
			AICAO	On 40 m /80	
		R = 0.6125m	A1CAO [6]	Or 49 <i>m</i> /80	
			լսյ		

	Answer		Marks	Guidance	
7	(i)	$mg \times 0.2 = \frac{2.45m \times e}{0.3}$ $e = 0.24$	M1 A1 [2]	No errors; must show all numbers	allow sin/cos, wrong sign, missing g
	(ii)	Use $F = ma$ down slope $mgsin\alpha - \frac{2.45m(x - 0.3)}{0.3} = m\ddot{x}$ $\ddot{x} = -\frac{49}{6}(x - 0.54)$ SHM (about $x = 0.54$)	M1 A1	3 terms needed	Allow sign error, sin/cos, missing g or m Could use x in place of $x - 0.3$, leading to $\dot{x} = -\frac{49}{6}(x - 0.24)$ (about $x = 0.24$) Or $x + 0.24$ in place of $x - 0.3$ leading to $\ddot{x} = -\frac{49}{6}x$ (about $x = 0$)
		$\omega = 7/\sqrt{6} (2.8577)$ $T = 2.20$ $a = 0.105 \text{ m} (0.1049795)$	B1 B1CAO B1ft [6]	ω^2 in simplified form Soi AG Need to see $2\pi/\omega$ oe ft their ω $\frac{3\sqrt{6}}{70}$	May see $\omega^2 = 8\frac{1}{6}$ 2.1986568 NB Can find a by energy, leading to ω and T
	(iii)	Use of SHM eqn for distance $x = -0.0956(227)$ Dist from <i>O</i> is 0.444(377) (m) Use of SHM equation for velocity $v = -0.124$ (-0.123949)	M1 A1ft A1CAO M1 A1 [5]	$x = a\sin\omega t$ Their a $v = a\omega\cos\omega t$ must be clear velocity is towards O	Allow M1 for $x = a\cos\omega t$ Or -0.9553 or -0.09577 Allow M1 for $v = -a\omega\sin\omega t$ if consistent with x eqn for $\sin/\cos a$, ω Use of $v^2 = \omega^2(a^2 - x^2)$ will not gain A1 unless direction is established